Muon Collider BIB studies Updates

Shivani Lomte

Oct 27, 2022

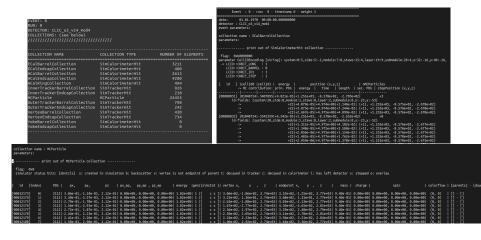
1/12

Outline

- BIB Simulation: understanding event distribution
- Occupancy plot of MCParticles
- Event Visualization example

Understanding BIB simulation steps

BIB particles: from MARS15 BIB provided my MAP as a text file: list of particles from MARS15 simulation · each line represents a single particle crossing the outer detector/nozzle surface only a fraction of all particles actually included · each particle has an associated weight to calculate the proper normalisation Dedicated C++ macro converts text files to slcio files, compatible with ILCSoft 1 line → 1 MCParticle with corresponding position, momentum, pdgld, etc. . + N copies of the particle randomly distributed in φ to account for the weight particles split in multiple events (default: 2000 lines/event → 2993 events) can use a fraction of all particles in the simulation (< 2993 events) to run the GEANT4 simulation in parallel over fixed batches of events Possible to exclude particles based on certain selection criteria · time of arrival of the particle energy of the particle if it's a neutron (relevant for performance) Muon Collider simulation package Nazar Bartosik


Figure: Talk by Nazar Bartosik on MC Simulation Package in Sept2020 [link]

These 2993 events are distributed in 16 files (8 each for μ^- , μ^+ beams) $\frac{1}{100} = \frac{1000}{100} = \frac{10$

... sim_mumipl = 1e3x500 = 26m = lowth excl_j**1**:slcio

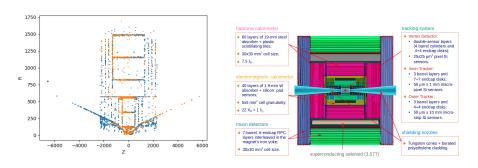
Contents of BIB slcio file

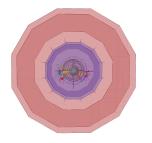
- Simulation of detector response to incoming particles.
- Has MCParticle Collection, Tracker & Calorimeter SimHits Collections.

Let's look at MC Particles vertex (x, y, z) corrdinates

Occupancy (R vs Z) of a fraction of MCParticles

2/2993 events, 1 from μ^- and μ^+ beam each.




Figure: Left: MCParticles from μ^- beam and μ^+ beam

Next: check SimHits distribution

Event Display

Can visualize event with simplified geometry rendering

\$ced2go -d geometry.xml sim_mumi-1e3x500-26m-lowth-excl_j1.slcio

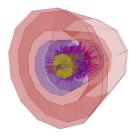
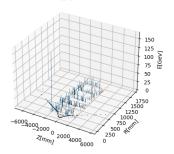
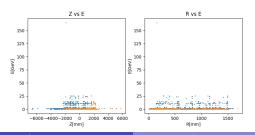
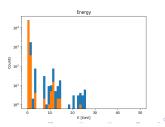


Figure: Hbb event (left) and BIB (1/2993 event) (right).

Interesting toolkit to study BIB patterns

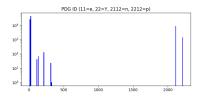

Nov 3rd: Updates

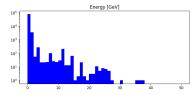

- 3d plot: Z vs R vs E
- Energy distribution (plot multiple pseudo-events to see a pattern)
- Write a script to read all .slcio BIB files and write out MCParticle collection to a branch or TTree


7/12

Z vs R vs Energy

MC Particle Z_R_E (for 2/2993evts)

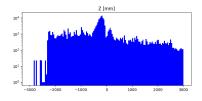

Shivani Lomte

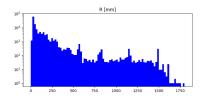

Updates: Dec 1

- MCParticle distributions
- next: generate more events using these distributions
- looking at code that converts MARS output to slcio format, to how to structure the MCParticles info.

MCParticle distributions: Particle ID and Energy

 μ^- beam with 570/1494 pseudoevents (38%)

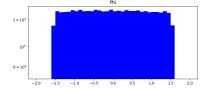


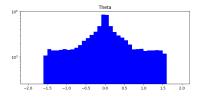

Mostly photons, electrons and neutrons

Shivani Lomte Muon Collider BIB studies Oct 27, 2022 10 / 12

MCParticle distributions: Z and R

$$R = \sqrt{x^2 + y^2}$$


 μ^- beam is headed in -z direction


11 / 12

Shivani Lomte Muon Collider BIB studies Oct 27, 2022

MCParticle distributions

$$Phi = tan^{-1}(P_y/P_x)$$

 $Theta = tan^{-1}(P_y/P_z)$

- uniform in Phi as expected
- MCParticles have high longitunal momentum

4□ > 4□ > 4 = > 4 = > = 90

12 / 12