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Research Interests:
R Quantum kinetics, Mesoscopic effects, Nonequilibrium systems,
Superconductivity, Topological materials

https://arxiv.org/find/cond-mat/1/au:+Levchenko A/0/1/0/all/0/1

» Electronic phases and transport in quantum materials at strong coupling
(NSF: single-PI, 2022-2025)

» Modeling, probing, and controlling quantum coherence in materials
(DOE: multi-PI, UWisc+Livermore Nat Lab, 2022-2025)

» Hybrid Quantum Architectures and Networks
(NSF: multi-PI, UWisc+UIUC+Uchicago, 2019-2024)

Group: 2 undergraduate students, 2 graduate students, 1 postdoc
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Dmitry Songci



https://arxiv.org/find/cond-mat/1/au:+Levchenko_A/0/1/0/all/0/1
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Spin or valley Hall effect
Thermal Hall effect

Spin-torque
Polar Kerr/Faraday effects

Chiral magnetic effect
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bilayer graphen:

Correlated normal state
Superconductivity
Insulating state

Topological states
Unconventional SC



Scanning tunneling potentiometry

b LDOS @ 10mV
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Hybrid superconducting/topological systems

[#1] SC metamaterials platform [#2] Super-Semi platform Ap example from the recent work:
AJE in planar 2D devices

Jj(@) = jesin(@ + ¢o)
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Condensed matter theorist, broadly interested in
characterizing phases of matter and phase transitions in

..«  many-body quantum systems

Ilya Esterlis

My work is motivated both by close collaboration with experiment, as well as formal
questions regarding the organizing principles governing the phase diagrams of
interacting quantum systems. Current lines of investigation include:

* Superconductivity in conventional and unconventional metals

* Phases of two-dimensional electronic systems

* Characterization of exotic magnetic materials



Superconductivity in conventional and unconventional metals
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Phases of two-dimensional electronic systems

* What is the behavior of two-dimensional electron systems at intermediate
coupling? Are there phases intermediate between the electron liquid and electron
solid and how would we probe such a phase?
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magnetism? intermediate phases (e.g., microemlusions)? ...



Characterization of exotic magnetic materials

* Many magnetic materials of current interest are challenging to probe with
conventional techniques — what new techniques can we develop to learn about
these interesting systems?

PL (a.u) 153 poess—1164




Mark Friesen
https://pages.physics.wisc.edu/~friesen/
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Device simulations [ st ¥
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Materials physics of quantum dot qubits

1%
—  + DISORDER!

Other ongoing projects: SiGe Barrier s *Specially engineered
| | Si ' '~ heterostructures
- Topological qubits based on super- SiGe Quantum well =3 - Novel qubits enabled

Barrier

M by novel materials

Silicon quantum well

semi hybrids
- Charge defects and charge noise that
affects quantum dot qubits




Fast qubit initialization using excited states of a quantum dot

Actual device Cartoon device Theorists’ view of
' ' a quantum dot

Metal control gates

* 3D confinement
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Theoretical simulations of quantum dot excited states: valleys

Conduction band
minimum (“valley”)

Magnetic
Sharp field
interface _ v>
2x2-fold energy level +1)
- A> Valley qubit or
g _|_A> spin qubit?
%
£
L
~° 0 00 00
gsce ® ©® @ ® © @
~10 €i O O@'Q @ 0 O
|
0 00,0 O O
® 00000
@ O @ O
00 0 0 0

Tight-binding models can describe valley
splitting in disordered quantum wells

PRL 128, 247701 (2022)



Theoretical simulations of quantum dot excited states: valleys

Conduction band

minimum (“valley” “Wiggle Well”

Magnetic
field

2x2-fold energy level

Y
" “degeneracy in a quantum well \ .

J y . lley qubit or
> A spin qubit?
- Metal control gates
& |
3
S !

—6} | 15 nm
- X : 25 nm
|
—10 I
| 10 nm
M ! M
L A T A X UK = r 200hm

1.8 nm germanium concentration oscillations
arXiv:2112.09765



Maxim Vavilov — Quantum hardware simulations

Research Interests: superconducting quantum devices, mesoscopic
superconductivity, quantum simulations, machine learning

Current group: Yingi Chen (5t year PhD), Rafael Alapisco (1t year PhD)

Most recent group members:

» Kostya Nesterov (postdoc, now at Blexio Inc — QC startup),

e Baris Ozguler (PhD 2020, intern at LANL, now postdoc at Fermilab)
 Zhenyi Qi (PhD 2019, intern at NASA, Google Al + quantum)



Fluxonium Qubit

ﬁ% superinductance
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(external flux threading the loop) Y.-H. Lin, et. al., PRL 120, 150503 (2018)

Superinductor — large superconducting inductor formed by an array of Josephson Junctions or
dirty superconductor with large kinetic inductance.

Superinductor provides protection of the fluxonium qubit against:

* Flux noise due to large inductance;

* Low-frequency charge noise by screening all offset charges;

 We demonstrated high fidelity fast two qubit gates (PRX 11, 021026; PR Research 4, 023040)
 Next step - multiqubit systems



Two

Any two qubit gate is characterized by three c3
rotation angles {c;, ¢,, ¢;} and single qubit | —

rotations
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Gates are characterized by local
invariants that define unique points in
the Weyl chamber.

What are suitable two-qubit gates for
specific hardware?
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Quantum simulations using chain of fluxonium qubits

Transverse-field Ising model: what are effects of higher energy states, interaction
with resonator modes, effect of disorder.
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Machine learning applications to characterization and control of quantum systems

Convolution Neural Network

Convolution Pooling Convolution Pooling Fully Fully

Connected Connected
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: Output
\ 64 nodes
o
\ /
\ // ]
\_/

Fluxonium
Energy Spectrum
Input Image Feature maps Pooled Feature maps Pooled Ev |
Feature Maps Feature Maps E, |
(64x64) 16 Filters 32 Filters Ec |

Thanks to Rafael!



Epitaxial Super-Semi devices

A system of coupled resonators. One terminal of tunable resonators
(1,2,and 4) are shunted by super-semi Josephson contact
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Strickland et al, arXiv:2210.02491, see also arXiv:1806.01880 — tunable resonators



Josephson Effect in Epitaxial Super-Semi junctions

T > Beenakker’s determinant equation
Defines ABS energies in terms of the full

I scattering matrix S
) (valid for short wires, L,W<<¢&)

SClead §

QLZO

Lt o P det[1 — exp (—2iv) #5*7#*S] = 0
Here, v = arccos(E/A) for E < A;

The scattering region is a ballistic normal metal

g (p—eA)? T = diag{ewl, e e“bN} and

2m ¢; are the SC phases in the leads.
We use the lattice model
H=3_,tijcle; —ndcl > Finite size system
with t;; = toe'®, tg = h? /(Sma ), (microscopically accurate model, finite
and ¢;; o< B is the magnetic factor. size effects )

Kwant package is used for simulations, combined with own software and high throughput
computing at UW-Madison (UW-CHTC).
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Micheline Soley

Physics
Department—
Affiliate

Chemistry
Department

Theorist interested 1n research at the intersection between physics,
chemistry, applied mathematics, and computer science with a
particular focus on:

Quantum computing algorithm development

Simulation, analysis, and quantum control of
ultracold collisions and near-threshold systems

Investigation of LT -symmetry behavior in
fundamental quantum-mechanical systems



Quantum computing algorithm development

Algorithmic design for quantum
computation on discrete qubit- and
continuous qudit-based quantum
architectures, collaboration with
experimental groups

Simulation of molecular dynamics,
near-threshold scattering, and
global optimization informed by
matrix product state/tensor
network approaches
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Simulation, analysis, and quantum control of ultracold collisions and near-
threshold systems

What role does quantum reflection play in 1
ultracold collisions (universal laws, os |
computational simulations, product
formation, quantum-classical
correspondence)?
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Investigation of 25 -symmetry behavior in fundamental quantum-
mechanical systems
Search for non-Hermitian, S -symmetry behavior in near-threshold quantum mechanics

via quantum scattering theory and the application of reflectionless scattering mode theory
from optics to chemistry and quantum mechanics

E _ - — x| P
‘ E, = 11.802434 Quantum-scattering results for V(x)=—|x |

‘ E, = 6.003386
‘ E, = 1.477150
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Interested in the pursuit of LT -symmetric technologies and experimental realization



