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Electronic phases and transport 

Family of anomalous
Hall effects:

Spin or valley Hall effect
Thermal Hall effect 
Spin-torque
Polar Kerr/Faraday effects
Chiral magnetic effect
Nonlinear photogalvanic effect
Nonlinear Hall effects
Anomalous Josephson effect

Magic angle twisted 
bilayer graphen:

Correlated normal state
Superconductivity 
Insulating state 
Topological states 
Unconventional SC



Scanning tunneling potentiometry 



Hybrid superconducting/topological systems 

[#3] Superconductor-Topological Insulator platform

[#2] Super-Semi platform[#1] SC metamaterials platform An example from the recent work:
AJE in planar 2D devices

𝑗 𝜙 = 𝑗!sin(𝜙 + 𝜙")



Ilya Esterlis

Condensed matter theorist, broadly interested in 
characterizing phases of matter and phase transitions in 
many-body quantum systems

• Superconductivity in conventional and unconventional metals

• Phases of two-dimensional electronic systems

• Characterization of exotic magnetic materials 

My work is motivated both by close collaboration with experiment, as well as formal 
questions regarding the organizing principles governing the phase diagrams of 
interacting quantum systems. Current lines of investigation include:



Superconductivity in conventional and unconventional metals

• What limits the superconducting 
transition temperature in 
conventional metals? 

• What is the nature of the 
superconducting state that 
emerges from an unconventional 
metal? 

strong-coupling polaronic limit, electrons are essentially localized
on a lattice site, so n~0 approaches the average electron density per
site. For 0<λ ! 1 the electronic spectrum is perturbatively
rearranged and n~0 is slightly depressed. This behavior is apparent
in both the ME approximation and from the DQMC results for
λ<λ". However, for λ>λ", the DQMC results show a rapid decrease
of n~0, consistent with a crossover to the polaronic limit. Moreover,
even though we are not able to directly compute Tc (due to the
difficulty in obtaining convergence of the DQMC results at low
temperatures), by a series of indirect arguments, we1 inferred that
Tc is maximal near the point of this crossover, λ ¼ λ", and
decreases dramatically when λ is either decreased or increased
further. This leads us to the conclusion that there is a well-defined
maximal value Max½A% & Amax ¼ Að0; λ"; 0; ¼ Þ.
It turns out that a careful numerical evaluation of the full (~k and

ω dependent) self-consistent ME equations also leads to a non-
monotonic behavior of A, which leads to a vanishing Tc for λ > λ*.
However, in contrast to what is found in the DQMC, in the ME
treatment the depression of Tc for λ > λ* is associated with the
onset of a competing incommensurate CDW order. This distinction
is important, since if it were only the competition with CDW order
that prevented high Tcs, one could “engineer” interactions2 that
suppress CDW order so as to enhance Tc.
Combining the results from the ME theory (where valid) with

the DQMC results, we obtained estimates of Amax for the Holstein
model on the square lattice. For the range of parameters we have
explored, the highest value of Tc we have inferred is 0.08 times the
bare phonon frequency, but because significant phonon softening
occurs for λ ) λ", this value of Tc is 0.12 times the maximal
renormalized phonon frequency. Many physically realistic general-
izations of this model are possible—either by modifying the lattice
structure, the electron band structure (further neighbor hopping
matrix elements), the number of phonon modes and their
dispersion, and the structure of the electron-phonon coupling—
all features represented by the … in A. There is no reason that the
value of Amax(…) obtained by optimizing with respect to λ, should
not depend somewhat on these various features, although we
have already found it to be relatively insensitive to small changes

of the band structure. Still, it is an interesting exercise (which we
are currently undertaking) to determine what microscopic features
of the electron-phonon problem can increase Amax.
For now, however, we will adopt an estimate of Amax ≈ 1/10 as

suggested by results for the simple Holstein model, and see how it
compares with experiment in real materials.

Experimental determination of kBTc=!hω
In Fig. 2 we plot the superconducting Tc vs. the Debye
temperature, ΘD for various elemental superconductors and
compounds for which data are available. In most of the data
shown, ΘD is computed on the basis of the measured low
temperature lattice contribution to the specific heat and the
number of atoms per unit cell in the crystal structure, while in
others it is inferred from e.g. low temperature resistivity. It thus
represents a specific, unambiguously defined (although somewhat
crude) estimate of the characteristic maximal phonon frequency
!hω ) kBΘD. Also shown in the figure is the proposed bound Tc ≤
ΘD/10.
Not only do we see that the bound is satisfied by all the data we

have found (which is not, unfortunately, an exhaustive set), but in
some cases the materials come quite close to saturating the
bound, meaning that the bound may have some real significance.
Specifically, for Pb (Tc= 7.2 K), Nb (Tc= 9.25 K), and Hg (Tc=
4.15 K), three elemental superconductors known for their relatively
strong electron-phonon couplings, Tc/ΘD takes on the values
0.069, 0.034, and 0.058, respectively. The A-15 family of old fashion
“high temperature superconductors,” Nb3Sn (Tc= 17.9 K), Nb3Ga
(Tc= 19.8 K), and Nb3Ge (Tc= 21.8 K) have Tc/ΘD equal to 0.066,
0.071, and 0.072, respectively.
At ambient pressure, the highest temperature superconductiv-

ity of a clearly conventional sort (with w ! 1) is MgB2, which does
not appear in the figure because it has such a high ΘD= 884 K,
and thus has Tc/ΘD= 0.04.3 This suggests that if a way can be
found to increase the value of λ in this material, it could lead to as
much as a factor of 2 enhancement of Tc. The highest Tc of all
conventional superconductors is Tc= 203 K in H3S at 155 GPa.4 As
far as we know, the Debye temperature has not been measured;
however, if we identify ω with the largest phonon frequencies
found in DFT calculations of the phonon band structure we obtain
the estimate !hω ¼ 0:23 eV.5 If we accept this theoretical value,

Fig. 1 Occupancy of the~k ¼~0 (band bottom) single-particle state as
a function of the bare dimensionless electron-phonon coupling λ0
(lower scale) and the renormalized coupling, λ (upper scale). (The
definitions are as given in ref. 1). Solid dots are from DQMC
simulations described in ref. 1 with ℏω0/EF= 0.1, and the data shown
are at a temperature T ≈ EF/30, at which n~0 has reached its
asymptotic low T-value. The dashed line is the same quantity
computed within ME theory. The inset shows the difference
between the DQMC and ME results. The scale on the vertical axis
has been chosen such that 0 is the value for non-interacting
electrons and 1 is the value in the polaronic limit. (ρ= 0.8 is the
average electron density per site.)

Fig. 2 Measured values of Tc and ΘD for various putatively
conventional crystalline superconductors. The dashed line is the
proposed bound Tc=ΘD/10. Data on the various materials were
obtained from the following references: elements from refs. 19,20 A-
15s from ref. 21 Skutterudites from refs. 22–24 CaC6 from ref. 25 BKBO
from ref. 6. In most cases estimates of ΘD were obtained from low-
temperature-specific-heat measurements, in others it was estimated
from e.g. low temperature resistivity. This dataset is far from
exhaustive and we plan to expand on it in the future

A bound on the superconducting transition temperature
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Figure 7: Left panel: spectral function at strong coupling (g = 4 with Tc ⇡ 0.11!0) for different temperatures. In distinction to
the weak coupling case we find gap filling, rather than gap closing and a pronounced peak-dip-peak structure. The latter is not
due to the coupling to the phonon mode, which has much smaller energy. Right panel: spectral function at T = 0 for different
coupling constants revealing a large number of shake-off peaks that reflect the bound state formation in this limit of strongly
coupled Cooper pairs. Also, the total weight of the leading coherence peak decreases with increasing coupling strength.
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with ↵ = 3!
2
0

8⇡2T 2
c
. One easily finds that this equation has a solution for ↵c = 3.03458, which yields for the transition

temperature Tc =
q

3!2
0

8⇡2↵c
. Inserting the numerical coefficients yields Eq.30. The transition temperature saturates

as g ! 1, in quantitative agreement with the numerical results shown in Fig.5. This analysis also reveals the reason
why pairing of fully incoherent fermions is possible. The lack of fermionic coherence, with large imaginary part of
the electronic self energy, is caused by the coupling to almost static bosonic modes. However, by arguments that in
the context of disordered superconductors give rise to the Anderson theorem, such static bosons affect the normal
and anomalous self energies ⌃ and �, yet they cancel for the actual pairing gap � = �/Z which is solely affected by
the much weaker quantum fluctuations of the bosonic spectrum. Thus, pairing of time-reversal partners occurs even
for incoherent fermions, a state that is protected by the same mechanism that makes the superconducting transition
temperature robust against non-magnetic impurities[77–84].

Now that we established that superconductivity sets in at a temperature that is deep in the incoherent strong
coupling regime, we discuss the properties of this superconducting state. We start with our numerical results for
the spectral function and the anomalous Green’s function. In Fig.7 we show the fermionic spectral function in the
superconducting state. In distinction to the gap-closing behavior that occurs at weak coupling, we find a filling of
the gap, where the position of the maximum is essentially unchanged with temperature. In addition, higher order
shake-off peaks occur that become most evident in the strong coupling limit. The value of the superconducting gap
is, just like the transition temperature, independent of coupling constant and of order of the bare phonon frequency
!0. The lowest excitation of the fermions is �0 ⇡ 0.640869140625!0. This yields

2�0/Tc ⇡ 11.456366, (38)

which is more than three times the BCS value 2⇡e��E ⇡ 3.527754. Such large values of 2�0/Tc have been obtained
in the Eliashberg theory at strong coupling and for small phonon frequencies[59, 60]; for a recent discussion see[85].
Since the spectral weight of the excited state is transferred from energies below the gap, we can estimate the weight
of the peak as Zcoh ⇡

´
�⇡!0

0
Ans (!) d! / g�2, where we used the normal state spectral function of Eq.27. We will

see below that this result can be obtained rigorously at large g.
A very intriguing feature of the low-T spectral function is the occurrence of a large number of shake-off peaks at

discrete energies ⌦l that are reminiscent of the satellites that emerge as one forms polaronic states due to strong
electron-phonon coupling. However, in the conventional polaronic theory these shake-off structures exist at energies
✏0 + l!r where ✏0 is the bare fermion energy, !r the phonon frequency[86], and l an integer. In our case !r is much
smaller than the separation of the peaks in the spectral function. In fact such structures in the normal and anomalous



Phases of two-dimensional electronic systems

• What is the behavior of two-dimensional electron systems at intermediate 
coupling? Are there phases intermediate between the electron liquid and electron 
solid and how would we probe such a phase?



Characterization of exotic magnetic materials 

• Many magnetic materials of current interest are challenging to probe with 
conventional techniques – what new techniques can we develop to learn about 
these interesting systems?

However, for the current experimental setup we find that the
presence of significant background as well as noise prohibit
carrying out this procedure explicitly (SI Appendix). The inver-
sion is therefore done by fitting the “source”, i.e., ∇ ·m, to best
match the intensity pattern seen in the experiment. As basis
functions for the fit we take the Gaussian function e−(x2+y2)=σ2 and
its derivatives up to eighth order in both directions, where σ is
fixed to be the radius of the Py disk. We separate the source into
real and imaginary components (Fig. 4 B and C, Left and Right
Insets), to reflect a possible phase shift of the scattered wave with
respect to the incident wave. Results of the analysis for the
phase-resolved images are presented in Fig. 4. Note that we
shifted the overall phase of the source in a way that makes it
easier to separate components with different symmetries. The
simplest model of magnetization dynamics of the target excited
by the DESW corresponds to magnetic moment of the disk
precessing around the direction of the static field, i.e., in the xz
plane. Since the disk is very thin in the z-direction, the dominant
contribution to ∇ ·m should come from the x-derivative of the
x-component of magnetization. This should produce a dipolar
pattern for the source aligned along the x axis. Fig. 4B, Right Inset
shows that the imaginary part of the source is indeed of the di-
polar type, and it is almost an order of magnitude larger than the
real part (Fig. 4B, Left Inset). The real part of the source has a
quadrupolar character, which implies that the source has an
additional gradient along the y axis. We remind the readers that
the incident wave is propagating along the x axis, and hence this
y-gradient cannot be related to the spatial profile of the incident
wave. It appears to be an intrinsic feature of the target revealed

by our scattering experiment. We comment on several other
interesting features of our analysis. While we achieve an excel-
lent fit of our model to the phase images, using the same pa-
rameters for the corresponding amplitude images does not
automatically produce a good fit. We expect that understanding
this discrepancy requires introducing a more sophisticated ver-
sion of the Py disk/YIG interaction, including renormalization of
static susceptibility parameters of YIG below the target. Second,
we find the best agreement between theoretically simulated
phase images and the experimental data when the target is
represented using Gaussian basis functions, rather than functions
with sharper edges. This suggests that response of the Py target
near the disk edges is strongly suppressed. Finally, experiments
have been done in the regime where the diameter of the target is
of the order of the magnon wavelength. One can then expect the
disk to develop spatial gradients in the direction of propagation
of DESW. Surprisingly, we find that the main response of the
target corresponds to magnetization of the entire disk oscillating
as a whole.
Our magnonic scattering platform provides a way for exploring

mesoscopic materials. While clearly suited for magnetic target
materials, the time-varying magnetic fields generated by the magnons
can also lead to strong interaction with other phases of matter such
as superconductors, topological insulators with conducting surface
states, spin liquids, and more, thereby providing new insights into
such phases that are unattainable by other methods.

Data Availability. All study data are included in the article and/or
supporting information.

CBA

D E F

Fig. 4. Magnon scattering off a target. Magnons are launched from a microwave stripline on the bottom. While they propagate in the x-direction, they
impinge on a Py disk that was deposited on the surface of the YIG (indicated by the white circle). (A) The incoming plane wave scatters from the target and
the time-varying magnetic fields caused by the interference of this scattered wave with the incident wave is picked up by the NV. The data are averaged of 39
runs and smoothened over a 100-nm Gaussian window to reduce the noise. Close to the Py disk we observe a “flower”-shaped magnetization profile,
consistent with static field from a saturated magnetic disk shifting the ESR frequency of NV center to modulate fluoresce. A clear cone is observed, as
expected from DESW theory. (B) Best fit for a truncated basis set of localized sources. (Inset) Source image, left: real component, right: imaginary component.
(C) Theoretical prediction of the observed intensity if the source would be described by a simple dipole (see inset, left: real component, right: imaginary
component). Theoretical model parameters are fit to the data as described in SI Appendix. (D) An additional homogenous microwave field is superimposed on
the magnon field. The resulting fringes clearly indicate the plane wave nature of the magnons outside the Damon–Eshbach cone. Additional fringes in the
cone provide valuable information about the nature of the scatter. (E) Best fit for a truncated set of localized sources. (F) Theoretical prediction of the
observed intensity in D for an optimized dipolar source. a.u., arbitrary units.

Zhou et al. PNAS | 5 of 6
A magnon scattering platform https://doi.org/10.1073/pnas.2019473118
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Mark Friesen 
https://pages.physics.wisc.edu/~friesen/

PRL 128, 146802 (2022)

Device simulations 
to explore…

• Quantum confinement

• Electrostatics

• Multi-electron physics

SiGe

Si

SiGe

Materials physics of quantum dot qubits

Silicon quantum well

• DISORDER!

• Specially engineered 

heterostructures

• Novel qubits enabled 

by novel materials
• Topological qubits based on super-

semi hybrids

• Charge defects and charge noise that 

affects quantum dot qubits

Other ongoing projects:



Fast qubit initialization using excited states of a quantum dot

Courtesy: Eriksson lab

Actual device Cartoon device Theorists’ view of 
a quantum dot
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Theoretical simulations of quantum dot excited states: valleys
Conduction band 
minimum (“valley”)

Tight-binding models can describe valley 
splitting in disordered quantum wells

2x2-fold energy level

degeneracy in a quantum well

Sharp 
interface

Magnetic 
field

Valley qubit or 
spin qubit?<latexit sha1_base64="BMv+dsnMEIJAB1Nr0ImAxLxF2EY="></latexit>
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Theoretical simulations of quantum dot excited states: valleys
Conduction band 
minimum (“valley”)

2x2-fold energy level

degeneracy in a quantum well

Sharp 
interface

Magnetic 
field
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Maxim Vavilov – Quantum hardware simulations

Research Interests: superconducting quantum devices, mesoscopic 
superconductivity, quantum simulations, machine learning

Current group:  Yinqi Chen (5th year PhD), Rafael Alapisco (1st year PhD)

Most recent group members: 
• Kostya Nesterov (postdoc, now at Blexio Inc – QC startup),
• Baris Ozguler (PhD 2020, intern at LANL, now postdoc at Fermilab) 
• Zhenyi Qi (PhD 2019, intern at NASA, Google AI + quantum)



Fluxonium QubitFluxonium circuit

superinductance
(many JJs)
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Y.-H. Lin, et. al., PRL 120, 150503 (2018)(external flux threading the loop)

Effective model at ~10-20 mK:

0-1 frequency: 100 MHZ - 1 GHz
Qubit coherence times: 100 us - 1 ms

potential energy

Superinductor – large superconducting inductor formed by an array of Josephson Junctions or 
dirty superconductor with large kinetic inductance.
Superinductor provides protection of the fluxonium qubit against:
• Flux noise due to large inductance;
• Low-frequency charge noise by screening all offset charges;
• We demonstrated high fidelity fast two qubit gates (PRX 11, 021026; PR Research 4, 023040)
• Next step - multiqubit systems

2

pulse to transition |11i� |21i while the closest transition
|10i� |20i stays unexcited. This condition can always be
met if the gate pulse is much longer than 1/�, where �
is the shift of level |21i due to the nAnB-term, shown in
Fig. 1(b). Yet, we show that with an optimal combina-
tion of drive detuning and amplitude, the CZ-gate can be
completed in a time close to 1/� with zero leakage out-
side the computational subspace, thanks to synchroniza-
tion of Rabi rotations of both non-computational transi-
tions. For our specific device parameters (see Tables I,
II), we get � = 22 MHz (1/� = 45.5 ns) and the optimal
gate time is 61.6 ns. Remarkably, since � is not tied to
the qubit frequencies (here 72.3 MHz and 136.3 MHz),
the logical operation takes just a few qubit Larmor peri-
ods. To our knowledge, such a high relative gate speed
is unmatched across quantum computing platforms.

Population transit through non-computational states
is common in gates realized with transmons [26–33]. For
example, repulsion of states |11i and |20i enables a CZ-
gate via flux-tuning of these states in and out of reso-
nance [27]. Recent high-fidelity versions of this gate rely
on diabatic flux pulses [30, 33], resulting in a significant
population of state |20i for a short time, which draws par-
allels to our microwave-controlled scheme. In the case of
fixed-frequency qubits, repulsion between states |30i and
|21i was used in Ref. [34] to implement a CZ-gate ac-
tivated by a microwave pulse at a frequency near the
transition |11i� |12i. However, the insu�cient transmon
anharmonicity introduces many nearby transitions (there
is only one relevant transition |10i� |20i for fluxoniums),
and in the end such a gate proved impractical. Even in
gates designed to operate entirely within the computa-
tional subspace, e.g. the flux-activated |10i � |01i swap
gate [35–37] or the cross-resonance gate [38, 39], uncon-
trolled population leakage to non-computational states
remains an important factor limiting gate speed [40].
Yet, such coherent errors can be practically eliminated
in fluxoniums owing to their highly anharmonic spectra,
as exemplified by the gate scheme reported here.

Another important advantage of fuxoniums over fixed-
coupling transmons is that the static ZZ-shift, com-
ing from the repulsion of computational and non-
computational states, can be suppressed by over an order
of magnitude compared to typical values in capacitively
coupled transmons (here about 40 kHz), largely thanks to
the low qubit frequencies. For transmons, the static ZZ-
shift is an important source of gate error, the mitigation
of which draws additional resources. Thus, in the case
of the cross-resonance gate, the ZZ-term is suppressed
by a combination of circuit parameter matching, addi-
tional echo pulse sequences incorporated into the gate
protocol [40], and additional qubit rotations [41]. An
alternative strategy to eliminate the ZZ-shift is to use
flux-tunable couplers [20, 42, 43], which in practice act as
separate quantum systems and hence increase the circuit
complexity. More recently, the ZZ-shift was suppressed
in capacitively-shunted flux qubits using an additional
drive, but at the expense of operating away from the flux

FIG. 1. (a) Optical image of two capacitively-coupled flux-
oniums fabricated on a silicon chip along with their minimal
circuit model. Devices are similar to those reported in Ref.
[22] except the antennas are intentionally made asymmetric
for optimal coupling to the readout cavity [not shown]. (b)
Diagram of the lowest energy states of the interacting two-
fluxonium system. Capacitive coupling induces a shift of level
|21i by � due to repulsion from level |12i. The shift � leads
to a CZ-operation in time approximately given by 1/� when
either qubit is driven at a frequency in between the transitions
|10i � |20i and |11i � |21i.

sweet-spot [44].

The gate error in our scheme is largely limited by
decoherence outside the computational subspace. Ran-
domized benchmarking yields the averaged gate error of
8⇥ 10�3, which is consistent with the measured few mi-
croseconds coherence time of transitions |10i � |20i and
|11i � |21i (see Table II). Because these transitions are
transmon-like, we expect their coherence will improve by
an order of magnitude in the next generation experiments
with improved fabrication and noise filtering procedures.
This step would lower the gate error into the 10�4-range.
The presently achieved fidelity is on par with the low-
est reported values in microwave-activated gates [41, 45]
(cross-resonance gate by IBM). Additionally, our gate is
considerably faster than cross-resonance type gates with
comparable errors [40, 46]. Our result illustrates the po-
tential of highly-anharmonic circuits for quantum infor-
mation processing and it motivates the exploration of
large-scale quantum processors based on fluxoniums.

The paper is organized as follows, in Sec. II we describe
the details of our experimental setup, including spec-
troscopy of the two-fluxonium device, the joint single-
shot readout of fluxoniums, and state initialization pro-
cedures. In Sec. III we detail the concepts behind our fast
microwave-activated CZ-gate. Section IV presents the re-
sults of gate characterization, including quantum process
tomography and randomized benchmarking. In Sec. V
we review the technical limitations of the present exper-
iment, and project the near term improvements. Section
VI concludes the work.



Two qubit gates
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FIG. 2: Weyl chamber. The family of equivalence classes [Up
0011(✓)] corresponds to MNPQ, and the

family [pSWAP(✓)] corresponds to the vertical line A2A3.

1. Up
0011(✓) gates

Comparing these relations with Eqs. (10a) and (10b), we get
8
>>><

>>>:

4 sin2 c1 sin
2 c2 sin

2 c3 � 4 cos2 c1 cos2 c2 cos2 c3 = sin ✓ ,

sin(2c1) sin(2c2) sin(2c3) = � cos ✓ ,

cos(2c1) cos(2c2) cos(2c3) = 0 .

This system of equations has multiple solutions (c1, c2, c3). The tetrahedron representing the Weyl

chamber is determined by ⇡/2 � c1 � c2 � c3 � 0 and ⇡/2 � ⇡ � c1 � c2 � c3 > 0. We note

that the bottom face (c3 = 0) of the tetrahedron is divided into two regions of equivalent classes

((c1, c2, 0) ⇠ (⇡ � c1, c2, 0)), so the inequality c3 > 0 is strict in the second set of restrictions.

To find the points in the Weyl chamber, it is convenient to choose ✓ in the inveral between

�⇡/2 and 3⇡/2. This way, we have three ranges of ✓.

• �⇡/2  ✓  0: the solution is (3⇡/4, ⇡/4, ✓/2+⇡/4). This is the line MN in the tetrahedron

mation U as !U" . From the Cartan decomposition of su#4$ in
Sec. II B, any two-qubit gate U!SU(4) can be written in the
following form:

U!k1Ak2!k1exp! i2 #c1%x
1%x

2"c2%y
1%y

2"c3%z
1%z

2$" k2 ,
#16$

where k1 , k2!SU(2)!SU(2). Because the two-qubit gate
U is periodic in ck , the geometric structure of !c1 ,c2 ,c3" is
a 3-torus, T3!S1#S1#S1.
In Ref. !2", local invariants were given for two-qubit

gates. Here we will connect these invariants of Makhlin to
the coordinates !c1 ,c2 ,c3" on the 3-torus. We first consider
the case of the two-qubit gates in SU#4$, and then extend the
results to the general case of U#4$.

1. SU(4) Operations

Consider the transformation from the standard basis of
states #00&, #01& , #10&, #11& to the Bell basis #'"&
!1/!2(#00&"#11&), #'$&!i/!2(#01&"#10&), #("&
!1/!2(#01&$#10&), #($&!i/!2(#00&$#11&). In this basis,
the two-qubit gate U in Eq. #16$ can be written as

UB!Q†UQ!Q†k1Ak2Q , #17$

where

Q!
1
!2 $ 1 0 0 i

0 i 1 0
0 i $1 0
1 0 0 $i

% . #18$

Recalling that i/2)%x
1 ,%y

1 ,%z
1 ,%x

2 ,%y
2 ,%z

2* is a basis for k, it
is not hard to verify that i/2Q†)%x

1 ,%y
1 ,%z

1 ,%x
2 ,%y

2 ,%z
2*Q

forms a basis for so(4), the Lie algebra of the special or-
thogonal group SO#4$. Hence UB can be written as

UB!O1Q†AQO2 , #19$

where

O1!Q†k1Q!SO#4 $,

O2!Q†k2Q!SO#4 $. #20$

Equation #19$ can also be obtained from the Cartan decom-
position of su#4$ derived from the complexification of sl#4$,
as discussed in Sec. II B. An Abelian subalgebra a is gener-
ated by i/2)%x

1%x
2 ,%y

1%y
2 ,%z

1%z
2*, and the transformation to

the Bell basis takes these operators to i/2)%z
1 ,$%z

2 ,%z
1%z

2*.
Therefore, we have UB!O1FO2, where

F!Q†AQ!exp! i2 #c1%z
1$c2%z

2"c3%z
1%z

2$"
!diag!eic1$c2"c3

2 ,ei
c1"c2$c3

2 ,e$i
c1"c2"c3

2 ,ei
$c1"c2"c3

2 " .
#21$

Let

m!UB
TUB!O2

TF2O2 , #22$

where O2 is defined by Eq. #20$. The complete set of local
invariants of a two-qubit gate U!SU(4) is given by the
spectrum of the matrix m !2", and hence by the eigenvalues
of F2,

)ei(c1$c2"c3), ei(c1"c2$c3), e$i(c1"c2"c3), ei($c1"c2"c3)*.
#23$

Since m is unitary and det m!1, the characteristic polyno-
mial of m is then

#sI$m#!s4$tr#m $s3"
1
2 ! tr2#m $$tr#m2$"s2$tr#m $s"1.

#24$

Therefore the spectrum of m is completely determined by
only the two quantities tr(m) and tr2(m)$tr(m2). For a two-
qubit gate U given in Eq. #16$, its local invariants can be
derived from Eq. #23$ as

tr#m $!4 cos c1cos c2cos c3"4i sin c1sin c2sin c3 ,

tr2#m $$tr#m2$!16 cos2c1cos2c2cos2c3

$16 sin2c1sin2c2sin2c3

$4 cos 2c1cos 2c2cos 2c3 . #25$

2. Generalization to U(4)

Now let us consider the local invariants for the general
case of U#4$ !2". An arbitrary two-qubit gate U!U(4) can
be decomposed as the product of a gate U1!SU(4) and a
global phase shift ei+, where detU!ei4+. It follows that
m(U1)!e$i2+m(U), where

m#U $!#Q†UQ $TQ†UQ #26$

and

tr!m#U1$"!e$i2+tr!m#U $" ,

tr2!m#U1$"$tr!m2#U1$"!e$i4+)tr2!m#U $"$tr!m2#U $"*.
#27$

It is clear that the global phase factor just rotates the eigen-
values of m(U) along the unit circle in the complex plane,
while keeping their relative phase invariant. Therefore, it
does not affect the entangling properties and we can conse-
quently divide by det(U). The local invariants of a two-qubit
gate U are thus given by

G1!
tr2!m#U $"

16 detU ,

G2!
tr2!m#U $"$tr!m2#U $"

4 detU , #28$

ZHANG et al. PHYSICAL REVIEW A 67, 042313 #2003$
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Any two qubit gate is characterized by three 
rotation angles  {c1, c2, c3} and single qubit 
rotations

Gates are characterized by local 
invariants that define unique points in 
the Weyl chamber.

What are suitable two-qubit gates for 
specific hardware?



Quantum simulations using chain of fluxonium qubits
Transverse-field Ising model: what are effects of higher energy states, interaction 
with resonator modes, effect of disorder.

Earlier work with Baris (arxiv:2104.03300)



Machine learning applications to characterization and control of quantum systems

Thanks to Rafael!



The multi-terminal Josephson e↵ect

N. Pankratova,1 H. Lee,1 R. Kuzmin,1 K. Wickramasinghe,1, 2 W.
Mayer,2 J. Yuan,2 M. Vavilov,3 J. Shabani,2 and V. Manucharyan1

1Department of Physics, Joint Quantum Institute,
and Center for Nanophysics and Advanced Materials,

University of Maryland, College Park, MD 20742, USA.
2Center for Quantum Phenomena, Department of Physics, New York University, NY 10003, USA

3Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
(Dated: December 17, 2018)

Establishment of phase-coherence and a non-
dissipative (super)current between two weakly
coupled superconductors, known as the Joseph-
son e↵ect1, plays a foundational role in basic
physics2 and applications to metrology3, pre-
cision sensing4, high-speed digital electronics5,
and quantum computing6. The junction ranges
from planar insulating oxides to single atoms7,
molecules8, semiconductor nanowires9,10, and
generally to any finite-size coherent conductor11.
Recently, junctions of more than two supercon-
ducting terminals gained broad attention in the
context of braiding of Majorana fermions in the
solid state12–17 for fault-tolerant quantum compu-
tation18, and accessing physics and topology in
dimensions higher than three19. Here we report
the first observation of Josephson e↵ect in 3- and
4-terminal junctions, fabricated in a top-down
fashion from a semiconductor/superconductor
(InAs/Al) epitaxial two-dimensional heterostruc-
ture20. Due to interactions, the critical current of
a N-terminal junction becomes the boundary of
a (N � 1)-dimensional manifold of simultaneously
allowed supercurrents. The measured shapes of
such manifolds are explained by the scattering
theory of mesoscopic superconductivity, and they
can be remarkably sensitive to the junction’s sym-
metry class21. Furthermore, we observed a no-
tably high-order (up to 8) multiple Andreev re-
flections22 simultaneously across every terminals
pair, which verifies the multi-terminal nature of
normal scattering and a high interface quality in
our devices. Given the previously shown gate-
control of carrier density and evidence of spin-
orbit scattering in InAs/Al heterostructures, and
device compatibility with other 2D materials, the
multi-terminal Josephson e↵ect reported here can
become a testbed for physics and applications of
topological superconductivity.

In a conventional tunnel junction considered by
Josephson, the supercurrent varies sinusoidally with the
di↵erence in phases of the complex-valued order param-
eter in the two superconducting leads (terminals)2. The
amplitude of the sinusoid defines the junction’s most
important parameter – the critical current. A multi-
terminal Josephson junction can be conceptually viewed

FIG. 1. Multi-terminal Josephson junctions based on an epi-
taxial InAs/Al heterostructure. (a) A junction of N indepen-
dent superconductors across a common normal region, char-
acterized by a scattering matrix Ŝ. Each terminal j = 1, ..., N
has a superconducting phase �j and the associated supercur-
rent Ij . (b-d) Scanning electron microscope images of the
nanofabricated junctions of N = 3 (b,c) and N = 4 (d) copies
of which are used in this work. (e) Junction’s schematic cross-
section revealing the material stack and composition of each
layer of the heterostructure. (f) Transmission electron micro-
scope image of the semiconductor/superconductor interface.

as N independent superconductors coupled through a
common element characterized by a scattering matrix Ŝ
(Fig. 1a). Now a supercurrent in a given terminal period-
ically depends on all N�1 independent phase-di↵erences,
which e↵ectively adds an extra dimension to the problem
with every new terminal. While this property was con-
sidered in the past mostly for device applications23,24,
fundamentally new e↵ects in junctions of three and more
terminals were recently identified, such as strong break-
ing of Kramers degeneracy without Zeeman fields25 and
emergence of Weyl quasiparticle nodes19,26,27. In the sim-
plest manifestation of multi-terminal Josephson e↵ect,
a supercurrent forced into one terminal influences the
allowed values of supercurrent in every other terminal.
Therefore, traditional measurement of individual critical
currents across all possible terminal pairs is insu�cient.
Instead, one needs to identify all combinations of N � 1
independent bias currents (the N -th one is eliminated
by current conservation) for which every terminal main-
tains zero voltage. For example, the critical current of a
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Epitaxial Super-Semi devices

A system of coupled resonators. One terminal of tunable resonators 
(1,2,and 4) are shunted by super-semi Josephson contact

Strickland et al, arXiv:2210.02491, see also arXiv:1806.01880 – tunable resonators



Josephson Effect in Epitaxial Super-Semi junctions

Simulations   (WILL ALSO EXPLAIN MODEL AND PARAMETERS HERE)

Hsr

H

V

Psr

Hamiltonian of the unit cell

couples a unit cell to nearest unit cell

NsrNt

couples first unit cell to scattering region

Hamiltonian of the scattering region

orbitals in the leads, orbitals in the scattering
region

SC
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ad SC
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SC lead
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I may
omit Htot
and submatrices

The scattering region is a ballistic normal metal

H =
(p� eA)2

2m
� µ

We use the lattice model

H =
P

<i,j> tijc
†
i cj � µ

P
i c

†
i ci

with tij = t0e
i�ij , t0 = ~2/(8ma

2),
and �ij / B is the magnetic factor.

<latexit sha1_base64="fwMM4QHNgYUv4mXMF8uypfKwr88=">AAADYXicbVLLbtNAFLUTHq15pWXZzRUJUio1qROB6IKgUjZZFqlpKtWJNR7fJJPO2NbMuCiy/Ivs2cIvsAUxk1qIpFzJ8plz7mPm6EYZZ0r7/je3Vn/w8NHjnV3vydNnz1809vYvVZpLiiOa8lReRUQhZwmONNMcrzKJREQcx9HNJ6uPb1EqliYXepXhRJB5wmaMEm2ocM+dXywQlDlqlCyZg8S5EYApIBARbq/AKCSpFISDQE2457W8IGYq42Sl9IqjNxwEM0lo0Q4iUWRlB+3/Y3k47ZdFX5SdQOSmxgtuVUYoGkqU3hghVwjaTOdmOKMIIo2Rw2aaqRvCAAKVi7B4z46WH0odFmxZAg3ZNIjJ3IDltCihA2ZMlcg2ZGZle+mNxl+YXkCrajYA0KGP04IF2YKtubJ1ZGV/ECwiIqf94/aJINP+oaE9jyQxtP6mBplMM53CWcv6Zp9kXUZr3IxQncqu54WNpt/11wH3Qa8CTaeK87DxPYhTmgtMNOVEqeuen+lJQaRpy7H0AmOfec4NmeO1gQkRqCbFeiNKeG2YGGapNF+iYc3+W1EQodRKRCZTEL1Q25ol/6tFYmuynp1MCpZkucaE3g2e5RyMG3bdIGYSqeYrAwiVzFpCF8Qsi1k3ZU3pbVtwH1z2u7033bef+83Ts8qeHefAeeW0nZ7zzjl1hs65M3Ko+9X96f5yf9d+1Hfrjfr+XWrNrWpeOhtRP/gDn88OVw==</latexit>

Ø Beenakker’s determinant equation
Defines ABS energies in terms of the full 
scattering matrix S 
(valid for short wires, L,W<<x)

det[1� exp (�2i�) r̂Ŝ⇤r̂⇤Ŝ] = 0

<latexit sha1_base64="SO8zgestS2I/txC38+acu7WoaFQ="></latexit>

Here, � = arccos(E/�) for E < �;

r̂ = diag{ei�1 , . . . , ei�N } and

�j are the SC phases in the leads.

<latexit sha1_base64="X95//bSJrIrYhSJr9FZZuSnvKRY="></latexit>

Ø Finite size system
(microscopically accurate model, finite 
size effects )

Kwant package is used for simulations,  combined with own software and high throughput 
computing at UW-Madison (UW-CHTC).
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• Algorithmic design for quantum 
computation on discrete qubit- and 
continuous qudit-based quantum 
architectures, collaboration with 
experimental groups


• Simulation of molecular dynamics, 
near-threshold scattering, and 
global optimization informed by 
matrix product state/tensor 
network approaches

Quantum computing algorithm development



• What role does quantum reflection play in 
ultracold collisions (universal laws, 
computational simulations, product 
formation, quantum-classical 
correspondence)?


• How can molecular collisions be controlled 
quantum mechanically via preparation of 
coherent superposition states and external 
field parameters?
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V(x)

ψ(x)

x

Simulation, analysis, and quantum control of ultracold collisions and near-
threshold systems

A. D. Stone, et al. Nanophotonics, 10 (2020) 343.



Search for non-Hermitian, -symmetry behavior in near-threshold quantum mechanics 
via quantum scattering theory and the application of reflectionless scattering mode theory 

from optics to chemistry and quantum mechanics
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Investigation of -symmetry behavior in fundamental quantum-
mechanical systems
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