
TaskVine: Workflow for Data Intensive
and Serverless Applications

Douglas Thain and the CCL Team
University of Notre Dame
Throughput Computing 2023
Madison, WI July 2023

We collaborate with people who have large
scale computing problems in science,
engineering, and other fields.
We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.
We conduct computer science research in
the context of real people and problems.
We develop open source software for large
scale distributed computing.http://ccl.cse.nd.edu

The Cooperative Computing Lab

How do I organize my work to use HTCondor?
https://condor.cse.nd.edu

Unix-Oriented DAGs

Dynamic Task Creation

Dynamic Data Sharing

https://condor.cse.nd.edu

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from

very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and

software wherever possible.

TaskVine Architecture Overview

HTCondor Pool

Application

TaskVine Mgr

5

tasks results

Remote
ServicesShared

Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
App

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in
the cluster wherever possible!

Design Goals for TaskVine

▰ Make it easy to construct dynamic workflows with millions of tasks
running on thousands of cluster nodes.

▰ Handle common failures by detecting and recovering from worker
crashes, network failures, and other unexpected events.

▰ Avoid moving data wherever possible: leave data in place until it needs
to be moved or duplicated.

▰ Re-use data objects within and across workflows by tracking
provenance from original sources all the way to final outputs.

▰ Manage task resources (cpu, gpu, mem, disk) carefully in order to pack
in as much as we can (but not too much!) into each worker.

▰ Support complex software environments built from package managers
by explicitly naming dependencies of tasks.

TaskVine Worker

f3

f5

url
sd698d

url
wq73dv

temp
xyz123

file
su3g2n

buffer
r223cdf

T1

data.tar.gz

output.txt

T2

configinput.txt

output.txt

Task 1 Sandbox Task 2 Sandbox

Application

TaskVine Mgr

tasks results RAM CPU
0

CPU
1

GPU
0

GPU
1

File = Single file or complex dir.

Manager directs all file
movements and accesses.

Files are immutable and given a
unique cache name.

Each task runs in a sandbox
with a private namespace and
an allocation of cores, memory,
disk, and gpus.

TaskVine WorkerTaskVine Worker

In-Cluster Data Management

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

In-Cluster Data Management

worker

FSWEB

D S worker worker

manager
The manager selects a
worker for task 1, and
then directs dataset D to
be downloaded from the
web, and software
package S to be loaded
from the shared
filesystem.

In-Cluster Data Management

worker

FSWEB

D S I

1

worker worker

manager
Next, task 1 is
dispatched to that
worker, where it reads
dataset D, runs software
package S, and
produces file I, which
stays where it is created.

In-Cluster Data Management

FSWEB

D S I

2

I ISS

X

manager
Once file I is created, task
2 can run immediately on
that node, producing file X.
Software package S and
file I are duplicated to the
other worker nodes.

In-Cluster Data Management

FSWEB

D S I

2

I ISS Y Z

3 4X

manager
Now tasks 3 and 4 can run
on the other worker nodes,
producing files Y and Z.

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

5X F

Next, task 5 is dispatched
to the middle worker. It
consumes files X, Y, and Z,
which are pulled in from
peer nodes. The output file
X is produced on that
node.

manager

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

X F

manager
Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the
workflow.

The manager directs the
workers to delete any
remaining uncacheable files.

Common input files remain to
accelerate future workflows.

F

API: Declare Files Explicitly

import ndcctools.taskvine as vine

m = vine.Manager(9123)

file = m.declareFile("mydata.txt")
buffer = m.declareBuffer("Some literal data")
url = m.declareURL("https://somewhere.edu/data.tar.gz")
temp = m.declareTemp();

data = m.declareUntar(url)
package = m.declareStarch(executable)

API: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

t.add_input(url,"input.data")
t.add_output(temp,"output.data")

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)

API: Execute Python Function

task = vine.PythonTask(simulate_func,molecule,parameters)

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)

. . .

print(t.result)

sa
nd

bo
x

Sample Application: NCBI Blast

18

blast.tar.gz landmark.tar.gz

blast/ landmark/

blastp

NCBI

query

stdout

ENV

untar untar

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-linux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA…"

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software,"blastdir")
task.add_input(database,"landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)

sa
nd

bo
x

Mini-Tasks: FileUntar

19

blast.tar.gz

input.tar.gz

tar
xvf

output

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-linux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA…"

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software,"blastdir")
task.add_input(database,"landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

FileUntar

software

cacheable
shareable

cacheable
shareableUpshot: Common data prep done once for many tasks on a node.

sa
nd

bo
x

Mini-Task: FileXRootD

xrdcp

output.root

data = m.declareXRootD("xrootd://host/path", "proxy")

FileXRootD

XRootD
Server

proxy509.pem

proxy

X509_USER_PROXY=...

data

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them
reproducibly:

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root".format(url));
t.add_input(proxy,"proxy509.pem")
t.set_env_var("X509_USER_PROXY","proxy509.pem")
data = m.declareMiniTask(t,"output.root")

Manager Schedules Transfers

Uncontrolled
Transfers

Colin
Thomas

Controlled
Transfers

500 task BLAST
workflow (from
above) requires
both software
and data from
NCBI.

Obtaining and
deploying assets
is part of the
workflow itself!

Naming Objects for Persistent Storage

Files have one of three lifetimes:
● single-task
● workflow (default)
● forever

"forever" cached objects are
given
content addressable names from
a Merkle Tree of the file's
provenance. If any inputs change,
then so does the name of the
output, and it's not the same file.

S

S

D

5

S

D

5 X

Checksum(Content-of-S)
= 53ba27f

Checksum()

= f06da39

"cmd":"blast",
"inputs" = {
 "S" : Checksum(S),
 "D": Checksum(D)
}

Checksum()

= c320b61

"task" : Checksum(Task-5)
"output": "X"

Barry Sly-Delgado

Eliminating Startup Costs

The next time a (similar)
workflow is run, software
and data assets are
already copied, unpacked,
verified, and ready to use
on the cluster nodes.

Functions as a Service - Install Library

Define ordinary Python functions
def my_sum(x, y):
 return x+y

def my_mul(x, y):
 return x*y

Create a library object from functions
L = m.create_library_from_functions(
 "my_library", my_sum, my_mul)

Install the library on all workers.
m.install_library(L)

worker

24

worker

worker

L

L

L

py

py

py

m
an

ag
er

Functions as a Service - Invoke It

Define a function invocation and submit it

for i in range(1,100):
 t = vine.FunctionCall("my_library","my_sum",10,i)

worker

25

worker

worker

L

L

L

py

py

py

λ

m
an

ag
er

λ
λ

λλλ

λλλ

λλλ
Simply converting "import tensorflow" into the preamble
of a Library task saves 1.2GB of Python libraries, 30K
metadata system calls, and 5-10s latency per
FunctionCall.

David Simonetti

Multi-Modal Workflows

100x Standard Tasks
Build model from MNIST data.

For each produced model:
Deploy LibraryTask for inference.

Submit 10x FunctionCalls that
invoke each LibraryTask.

Application gradually accelerates
as standard tasks produce data
that define libraries that can then
be invoked.

Application: TopEFT in WQ

● Late stage data analysis for LHC CMS experiment. Search for new physics impacting
associated top quark production using the framework of effective field theory (EFT).
TopEFT uses Coffea HEP framework and scientific python components.

Kelci
Mohrman

Kevin
Lannon

TopEFT
Application

Coffea
Framework

TaskVine
Scheduler

Proc.

Proc.

XRootD
Proxy/Cache

XRootD
Data Federation

Manager
Node

TaskVine Workers

storage unitsaccess units

Accum

tmp

final

tmp
WAN

Local
Storage

data

data

Task view Worker view

New:
In-Cluster

Accumulation
TopEFT

+ TaskVine

Old:
Accumulation
Data Returned

TopEFT
+ Work Queue

Stuck on
Long Tail!

Tail
Eliminated!

WIP: Parsl + TaskVine

HTCondor Pool

TaskVine Mgr

29

Remote
ServicesShared

Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
AppParsl Data Flow Kernel

Parsl + TaskVine Exec

Kyle Chard
U. Chicago

Thanh
Phung

WIP: TaskVine and Dask

Dask Task Graph
d = {'x': 1,
 'y': (inc, 'x'),

 'z': (add, 'y', 10)}

Ben Tovar

import ndcctools.taskvine as vine
import dask
import dask.array as da

Create a new manager listening on port 9123
manager = vine.DaskVine(9123)

x = da.random.random((10000,10000),chunks=5000)
y = x + x.T
z = y[::2,500:].mean(axis=1)

result = z.compute()

print(result);

WIP: TaskVine and Dask

Dask Task Graph
d = {'x': 1,
 'y': (inc, 'x'),

 'z': (add, 'y', 10)}

Ben Tovar

import ndcctools.taskvine as vine
import dask
import dask.array as da

Create a new manager listening on port 9123
manager = vine.DaskVine(9123)

x = da.random.random((10000,10000),chunks=5000)
y = x + x.T
z = y[::2,500:].mean(axis=1)

result = z.compute(manager.get())

print(result);

Research Challenges

● Decomposing DAGs of Short Tasks
○ Dask and Parsl can produce O(1M) function evals that may be

less than one second each.
● Automatically Identifying Serverless Candidates

○ Can we recover the cost of deployment?
● Dynamic Resource Management

○ How to choose resources for raw functions?
● Dependency Management Challenges

○ Do you know what your code depends upon?
○ Do you want to use what others depend upon?
○ What are your expectations regarding updates?

Current Status of TaskVine

33

● TaskVine is a component of the
Cooperative Computing Tools (cctools)
from Notre Dame alongside Makeflow,
Work Queue, Resource Monitor, etc.

● Second release made in July 2023.
● Research software with an engineering

process: issues, tests, manual, examples.
● We are eager to collaborate with new

users on applications and challenges!

This work was supported by
NSF Award OAC-1931348

conda install -c conda-forge ndcctools

https://cctools.readthedocs.io

https://cctools.readthedocs.io

For more information…

34

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

This work was supported by
NSF Award OAC-1931348

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

Extra Slides

TaskVine Worker

f3

f5 url
sd698d

temp
xyz123

file
f19xa2

url
c03rd5

T

data.tar.gz

output.txt

Standard Task

RAM CPU
0

CPU
1

GPU
0

GPU
1

L

software

FunctionCall

F

LibraryTask

logfile.txtresult

fork

data

Simply converting "import
tensorflow" into the preamble
of a Library task saves 1.2GB
of Python libraries, 30K
metadata system calls, and
5-10s latency per
FunctionCall. We can mix
standard Tasks, Libraries, and
FunctionCalls in the same
workflow:

David
Simonetti

