%= UNIVERSITY OF
=5 NOTRE DAME

e
-

TaskVine: Workflow for Data Intensive
and Serverless Applications

Douglas Thain and the CCL Team
University of Notre Dame
Throughput Computing 2023
Madison, WI July 2023

CCTools Throughput Computing 2023

0SG All-Hands Meeting HTCondor Week

_ _ CCTools
The Cooperative Computing Lab

LIS N -« \We collaborate with people who have large

The Cooperative Computing Lab Software | Download | Manuals | Papers

e 1| scale computing problems in science,

About the CCL Community Highlight " . L]
We design software that enables our collaborators to easily harness ~ Scientists searching
large scale distributed systems such as clusters, clouds, and grids. for the Higgs boson
‘We perform fundamental computer science research in that enables have profited from L) =
new discoveries through computing in fields such as physics, Parrot's new support
chemistry, bioinformatics, biometrics, and data mining. for the CernVM
Filesystem
CCL News and Blo (CVMFS), a
network filesystem
T T e opera te compu te rsS Ste ms on t e
- n Talk at iPres 2015 (03 Nov 2015) ‘world-wide access to
CMS Cmc Study Paper at CHEP (20 Oct 2015) software
. with Umbrella (19 Oct 2015) installations. By
- DAGVZ Paper at Visual Performance Analysis using Parrot, CVMFS, and additional components integrated by the]
Workshop (13 Oct 2015) Any Data, Anytime, Anywhere project, physicists working in the »
« Virtual Wind Tunnel in IEEE CiSE (09 Sep 2015) ‘Compact Muon Solenoid experiment have been able to create a
 Three Papers at IEEE Cluster in Chicago (07 Sep 2015) uniform computing environment across the Open Science Grid. - -
« CCTools released (19 Aug 2015) Instead of maintaining large software installations at each) b)
o Recent CCL Grads Take Faculty Positions (18 Aug 2015) participating institution, Parrot is used to provide access m asingle
* (more news) highly-available CVMFS installation of the software from which

files are downloaded s nceded and aggressively cached for
efficiency. A pilot project at the University of Wisconsin has

e " "
: " Lte demonstrated the feasibility of this approach by exporting excess
L compute jobs to run in the Open Science Grid, opportunistically
— 370,000 CPU-hours across 15 sites with seamless

o— access to 400 gigabytes of software in the Wisconsin CVMFS
5.2.0 repository.

[e —— the context of real people and problems.

We develop open source software for large
http://ccl.cse.nd.edu scale distributed computing.

CCTools

How do | organize my work to use HTCondor?

https://condor.cse.nd.edu

Notre Dame
Condor Status

([1]
[1 1]
Slots Cores | ——1
a e o W Pwoodard@nd.edu 976 3904 =™
P hhatami@nd.edu 411 411

. . [l cbeaufil@nd.edu 370 370
UnIX'Orlented DAGS acummini@nd.edu 311 311
M jkinniso@nd.edu 193 291 |gm " H
jdiazort@nd.edu 275 =
M roidtman@nd.edu 261
[l kbarlock@nd.edu 217
ophelan1@nd.edu 98

kherring@nd.edu 58
: smustiph@nd.edu

mwolf3@nd.edu 1

Work Queue +=0= = |
"gayle@nd.edu

: pdonnel4@nd.edu :
H H tperkin1@nd.edu 1
Dynamic Task Creation pgniaar 1
oQ nblancha@nd.edu 1
/’0)\1 Q Unclaimed 241 L1
2 condao Stat Matched 138 1333
Preempting
CuU DA pthreads ner
"\' . W * oo 657 10400 e
PP TaskVine ;o
’/ Sort:

Show:

Dynamic Data Sharing ®

Scale:

https://condor.cse.nd.edu

@ 04
\ F)
{ :

TaskVine . ¢4

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from
very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and
software wherever possible.

TaskVine Architecture Overview

Application

=

results

HTCondor Pool

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in

Remote
Services

the cluster wherever possible! w

CCTools

Design Goals for TaskVine

Make it easy to construct dynamic workflows with millions of tasks
running on thousands of cluster nodes.

Handle common failures by detecting and recovering from worker
crashes, network failures, and other unexpected events.

Avoid moving data wherever possible: leave data in place until it needs
to be moved or duplicated.

Re-use data objects within and across workflows by tracking
provenance from original sources all the way to final outputs.

Manage task resources (cpu, gpu, mem, disk) carefully in order to pack
in as much as we can (but not too much!) into each worker.

Support complex software environments built from package managers
by explicitly naming dependencies of tasks.

= I

File = Single file or complex dir.

Manager directs all file
movements and accesses.

Files are immutable and given a
unique cache name.

Each task runs in a sandbox
with a private namespace and
an allocation of cores, memory,
disk, and gpus.

TaskVine Worker

|

RAM } [CI;U

151

GPU
0

1

GPU
1

N

J

sd698d

data.tar.gz

output.txt

A)

Task 1 Sandbox

Task 2 Sandbox

CCTools

In-Cluster Data Management

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

Ciewm o was

CCTools

In-Cluster Data Management

The manager selects a

worker for task 1, and

then directs dataset D to
be downloaded from the
web, and software '? \ S 31 worker worker
package S to be loaded

from the shared
filesystem. ﬁ

CCTools

In-Cluster Data Management

manager 5w ® B® *%maﬁ
Next, task 1 is hdi])

dispatched to that

worker, where it reads &
dataset D, runs software :
package S, and DysShl worker worker

produces file I, which

stays where it is created. @

CCTools

In-Cluster Data Management

manager

Once file | is created, task
2 can run immediately on
that node, producing file X. |[', ﬂ
Software package S and

file | are duplicated to the | I | TN S 1
other worker nodes.

CCTools

In-Cluster Data Management

manager

Now tasks 3 and 4 can run
on the other worker nodes,

producing files Y and Z. X ﬂ @— Q‘Qf

CCTools
In-Cluster Data Management -
®-m OB
manager g RS EeES

Next, task 5 is dispatched
to the middle worker. It

consumes files X, Y, and Z, [[, F _@
which are pulled in from

peer nodes. The output file
X is produced on that

node. @

CCTools

In-Cluster Data Management

Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the

® -5 e’ ~
manager 5= o< @ %WJ

workflow. =
X F
The manager directs the e e T e T | IRy
D S [I S S R 4
workers to delete any N RN N R

remaining uncacheable files.

Common input files remain to
accelerate future workflows.

API: Declare Files Explicitly

vin

file
buffer
url
temp

data
package

ndcctools.taskvine as vine

e.

Manager(9123)

m
m
m
m

.declareFile("mydata.txt")

.declareBuffer("Some literal data")
.declareURL("https://somewhere.edu/data.tar.gz")
.declareTemp() ;

m.declareUntar(url)
m.declareStarch(executable)

CCTools

CCTools

APIl: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

.add_input(url, "input.data")
.add_output(temp, "output.data")

.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)

CCTools

APIl: Execute Python Function

task = vine.PythonTask(simulate_func,molecule, parameters)
.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)

print(t.result)

CCTools

Sample Application: NCBI Blast

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-1inux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA.."

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

<

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software, "blastdir")
task.add_input(database, "landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)

Mini-Tasks: FileUntar

software = m.declareUntar(m.declareURL(blast_url))

Upshot: Common data prep done once for many tasks on a node.

CCTools

—

cacheable
shareable

FileUntar

sandbox

cacheable
shareable

CCTools
Mini-Task: FileXRootD ——

XRootD
Server

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them
reproducibly:

data = m.declareXRootD("xrootd://host/path", "proxy")

X509_USER_PROXY-=...

sandbox

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root”.format(url));

t.add_input(proxy, "proxy509.pem")
t.set_env_var("X509_USER_PROXY", "proxy509.pem") FileXRootD

data = m.declareMiniTask(t, "output.root")

CCTools

Manager Schedules Transfers

Controlled
Transfers

Uncontrolled
Transfers

Colin
Thomas
o0 0C
Manager to Worker Transfers Worker to Worker Transfers

500 task BLAST C ¥ e TR Obtaining and
workflow (from] deploying assets
above) requires § .| is part of the
both software i ; workflow itself!
and data from ;| 2]
NCBI. * 20 L

d — .)

Hime o

Naming Objects for Persistent Storage

Files have one of three lifetimes:
e single-task

e workflow (default)

e forever

"forever" cached objects are
given

content addressable names from
a Merkle Tree of the file's
provenance. If any inputs change,
then so does the name of the
output, and it's not the same file.

= 53ba27f

Checksum(Content-of-S)

Checksum(| 'S':Checksum(S), |)

) = c320b61

ey

RWla__

Barry Sly-Delgado

"cmd":"blast",
"inputs" = {

"D": Checksum(D)
}

"task" : Checksum(Task-5
CheCksum("output": "X"

)

= f06da39

Worker Number

400 1

2001

Eliminating Startup Costs

No Caching
Cache Updates ——— —
+ Marked Done = ——
+ Waiting Retrieval i;i_j}__— —
Il Minitask = -'- =
300 1 Curl URL j::i_:_::zf =
HE Tasks ;_;_:E__
100- =
0 e
0 25 50 75 100 125

Worker Number

3001
200§

100 8

CCTools

Caching

0010000000 O OO0 00008100 W A g2

Cache Updates
+ Marked Done
+ Waiting Retrieval
Il Minitask
Curl URL
Il Tasks

The next time a (similar)
workflow is run, software
and data assets are
already copied, unpacked,
verified, and ready to use
on the cluster nodes.

25

50 75 100 125 150

time

CCTools

Functions as a Service - Install Library

Define ordinary Python functions
def my_sum(x, y):
return x+y

worker py

def my_mul(x, y):
return x*y

manager

Create a library object from functions worker id
L = m.create_library from_ functions(
"my_ library", my_sum, my mul)

Install the library on all workers.
m.install library(L)

worker Py

CCTools

Functions as a Service - Invoke It E—
. . . . e s worker Py
Define a function invocation and submit it
for i in range(1,100):
t = vine.FunctionCall("my_library","my_sum",10,i) g
worker -
Simply converting "import tensorflow" into the preamble
of a Library task saves 1.2GB of Python libraries, 30K
metadata system calls, and 5-10s latency per
FunctionCall.
S - worker i
David Simonetti

CCTools

Multi-Modal Workflows

TaskVine

Il tasks executing

11421 mm asks lost on disconnection e
e bt 100x Standard Tasks

results waiting retrieval
| h dat .
W T A Build model from MNIST data.
Bl outputs to manager

For each produced model:
Deploy LibraryTask for inference.

Submit 10x FunctionCalls that

3 , invoke each LibraryTask.
E Application gradually accelerates
E as standard tasks produce data
g that define libraries that can then
I - be invoked.
_ B
P

0 45 20 135 2055

Application: TopEFT in WQ [9
Kelci Kevin
Mohrman Lannon
e Late stage data analysis for LHC CMS experiment. Search for new physics impacting
associated top quark production using the framework of effective field theory (EFT).

TopEFT uses Coffea HEP framework and scientific python components.

TopEFT > access units storage units
1 * /) =<

Coffea -
., Framework) final <4
[TaskVine) /

Local
Mar|ager Storage TaskVine Workers XRootD XRootD
Naode * Proxy/Cache Data Federation

4

old:
Accumulation
Data Returned
TopEFT
+ Work Queue

New:
In-Cluster
Accumulation
TopEFT
+ TaskVine

26904

21520

Stuck on

g 10149 Long Tail!
©
10760
5380
1
0 20 40 60 80 100
time(m)
27109
21680
Tail
g 10760 Eliminated!
©
*+ 10840
Bl tasks executing
5420 B results waiting retrieval
. [worker transfers

20 40 60 80 100
time(m)

cores

— g
pompnnpn——
e e

20 40 60 80 100

time(m)
1008
960
720
480
240
0

0 20 40 60 80 100
time(m)

Estimate three values for pi
a, b, c = pi(10%*6), pi(10%x6), pi(10%*6)

Compute the mean of the three estimates
mean_pi = mean(a, b, c)

Print the results
print(fa:s feo 5} b f2o5 1 e = 5} i format (atresult (), b
print("Average: {:.57}".format(mean_pi.result()))

Parsl Data Flow Kernel

[Parsl + TaskVine Exec]

| Tesivine Mo

Kyle Chard Thanh
U. Chicago Phung

q . ' 2

HTCondor Pool

Remote
Services

WIP: TaskVine and Dask

Ben Tovar

import dask
import dask.array as da

Dask Task Graph
d={x"1,
'v': (inc, 'X"),
'z": (add, 'y', 10)} da.random.random((10000,10000),chunks=5000)
= X + X.T
0o, y[::2,500:].mean(axis=1)

TaskVine _ T8

° result = z.compute()

print(result);

WIP: TaskVine and Dask

Ben Tovar

import ndcctools.taskvine as vine
import dask
import dask.array as da

Create a new manager listening on port 9123
manager = vine.DaskVine(9123)

Dask Task Graph
d={x:1,
y (|nc 'x')
addr1ﬁ10 X = da.random.random((10000,10000),chunks=5000)
y = X + x.T

z = y[::2,500:].mean(axis=1)

TaskVine *+*

result = z.compute(manager.get())

print(result);

Research Challenges

e Decomposing DAGs of Short Tasks
o Dask and Parsl can produce O(1M) function evals that may be
less than one second each.
e Automatically Identifying Serverless Candidates
o Can we recover the cost of deployment?
e Dynamic Resource Management
o How to choose resources for raw functions?
e Dependency Management Challenges
o Do you know what your code depends upon?
o Do you want to use what others depend upon?

o What are your expectations regarding updates?
4

Current Status of TaskVine

This work was supported by
NSF Award OAC-1931348

e TaskVine is a component of the https://cctools.readthedocs.io

Cooperative Computing Tools (cctools) e B 00 e : oo
from Notre Dame alongside Makeflow, screnorren [
Work Queue, Resource Monitor, etc. “ o, .
e Second release made in July 2023. i TaskVine
e Research software with an engineering TaskVine User's Manual
process: issues, tests, manual, examples. orerme
e \We are eager to collaborate with new
users on applications and challenges!

conda install -c conda-forge ndcctools

https://cctools.readthedocs.io

UNIVERSITY OF

NOTRE DAME

For more information...

This work was supported by
NSF Award OAC-1931348

https://ccl.cse.nd.edu/software/taskvine ™™=~ — .
https://dthain.github.io :

+* TaskVine

G
L

TaskVine is a framework for building large scale data intensive dynamic workflows that run on HPC clusters, GPU
clusters, and commercial clouds. As tasks access external data sources and produce their own outputs, more and more
data is pulled into local storage on workers. This data is used to accelerate future tasks and avoid re-computing exisiting
results. Data gradually grows "like a vine" through the cluster. TaskVine is our third-generation workflow system, built
on our twenty years of experience creating scalable applications in fields such as high energy physics, bioinformatics,
molecular dynamics, and machine learning.

q

"-\,

Douglas Thain Benjamin Tovar Thanh Son Phung Barry Sly Delgado Colin Thomas
Director Research Ph.D. Student Ph.D. Student Ph.D. Student
Soft. Engineer

Quick User Overview
Start Manual Slides

'\‘.?l 7.0 {
David Simonetti Joe Duggan Andrew Hennessee Matt Carbonaro Jachob Dolak

Undergraduate Undergraduate Undergraduate Undergraduate Undergraduate

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

TaskVine Worker

[RAM

1

T

~

)

data.tar.gz

N

Standard Task

data

result

-+
-

o
r -m o

[| f19xa2 c03rd5

: ; Y

software

-

FunctionCall

logfile.txt

A)

LibraryTask

Simply converting "import
tensorflow" into the preamble
of a Library task saves 1.2GB
of Python libraries, 30K
metadata system calls, and
5-10s latency per
FunctionCall. We can mix
standard Tasks, Libraries, and
FunctionCalls in the same
workflow:

David
Simonetti

