Office of

g EN ERGY Science

Automated benchmarking for resource
provisioning

Shrijan Swaminathan, Marco Mambelli
Throughput Computing 2023

DOE Omni Technol Alli E
1 3 July 2023 ’:E}/I mni Technology Alliance

INTERNSHIP PROGRAM PURDUE

s de on:‘mbus dgbxfandum UNIVERSITY.

suspictous of everything

College of Engineering

2% Fermilab

Why should we benchmark?

- Worker nodes are all different from each other.
- It is hard to compare due to differing architecture.
- Different ratio between CPU cores and RAM.

- To evaluate the total performance of a machine in such a
way that it is easily comparable but also while minimizing
error (in terms of oversimplification).

- Better quality nodes can reduce costs on clouds and
optimize cloud VM purchases, which transfers to higher
throughput overall.

2% Fermilab

Manual benchmarks

| mainly used the HepSpec06 (HS06) benchmark to run tests
on different types of cloud renting virtual machines. | primarily
used AWS EC2 and Google Cloud Compute as a basis for the

testing.

The main reason for running the benchmarks was to get price
to performance data of instances in order to figure out what
the most efficient instances to purchase based on hardware
performance.

Manual benchmark results

Amazon

B N corE

2% Fermilab

CORE TYPE B Speed(GHZ $ per houll HS06 per corB HS06 totafd HS06 per $/K8

c3 16 Xeon E5-2680 2.80 0.840 132 212 252
c4 16 Xeon E5-2666 2.90 0.796 12.6 201 252
c5 16 Xeon Platinum 8275CL 3.00 0.680 15.6 250 368
c5a 16 AMD EPYC 7R32 D 0.616 13.6 217 353
c6i 16 Xeon Platinum 8375C 2.90 0.680 16.3 260 383
cba 16 AMD EPYC 7R13 20 0.612 14.3 229 374
m4 16 Xeon E5-2686 2.30 0.800 115 184 229
m5 16 Xeon Platinum 8259CL 2.50 0.768 13.9 222 289
mb5a 16 AMD EPYC 7571 7l 0.688 9.1 146 212
m6i 16 Xeon Platinum 8375C 2.90 0.768 16.6 266 346
méa 16 AMD EPYC 7R13 2.0* 0.691 14.4 231 334
r3 16 Xeon E5-2670 2.50 1.330 12.7 203 163
r5 16 Xeon Platinum 8259CL 2.50 1.008 14.2 226 225
r5a 16 AMD EPYC 7571 21" 0.904 9.0 144 160
réi 16 Xeon Platinum 8375C 2.90 1.008 16.1 258 256 R

Google B N corM

CORETYPE B Speed(GHZB $ per houlld HS06 per corBd HS06 totaf HS06 per $/K3

n1-broadwell 16 Intel Xeon CPU 2.20 0.672 11.8 189 281
n1-haswell 16 Intel Xeon CPU 2.30 0.672 12:1 193 287
n1-ivybridge 16 Intel Xeon CPU 2.50 0.672 1 187 279
n1-sandybridge 16 Intel Xeon CPU 2.60 0.672 10.6 169 252
n1-skylake 16 Intel Xeon CPU 2.00 0.672 11.8 189 281
n2-cascadelake 16 Intel Xeon CPU 2.80 0.672 14.3 229 340
n2-icelake 16 Intel Xeon CPU 2.60 0.672 16.8 268 399
n2d-milan 16 AMD EPYC 7B13 2.50 0.587 133 213 363
n2d-rome 16 AMD EPYC 7B12 2.25 0.587 14.0 224 382
t2d-milan 16 AMD EPYC 7B13 2.50 0.677 19.7 o 465 "

2% Fermilab

Manual benchmark results (contd.)

Raw performance (rlght) HS06 results

IS higher for higher .

u 5 . . > * - * > * > <
generation cpus. 2 200 s . . cou o
§ 150 e *
< 100
50
0
O30 gBEEEdEETCaC RIS f4d¢
‘ SR 355734 E:
2 Rl g * 5D O N ore N
Instance Value (Price-Performance) dfceggegece
¢ . ™~
C
’5“ zgg o Instance type (16 cores) z
g;gg .‘.. * o .’..
E‘ 4+ ¢ ¢ * >
B ~ o $ o T g
€ 150 9 Even more pronounced
R S50
0 ——— X ———— for the performance over
SO EECEE T T I g 26
- < & C eSS T E L 1 .
f3:s::39 5% price ratio (left).
K E-RR A8 R R
- QR Kl
c c

Instance type (16 cores)

2% Fermilab

On-demand vs Spot pricing

Cloud VM pricing is split into two types: On-demand and Spot

On-demand Spot

- Fixed pricing - Varied pricing

- Canrun work foraslong - Has the possibility for
as the user wants being pre-empted

- Expensive (in comparison - Can be much cheaper
to Spot) than on-demand pricing

- Works similar to a service - Works similar to an
purchase auction

Using spot pricing reduces cost, which reduces
price-performance as a whole.

2% Fermilab

Use of Benchmark Results

HEPCloud’s Decision Engine at Fermilab uses a spot pricing
algorithm to provision cloud resources.

It uses the values from the benchmarks to calculate the figure
of merit of each VM type and minimize the cost.

(o0

HEPCloud

2% Fermilab

Manual vs Automated Benchmarking

- Many different new platforms are added all the time.
- Tailored benchmarks could optimize for different types of
user jobs.

2% Fermilab

Manual vs Automated Benchmarking

- Many different new platforms are added all the time.
- Tailored benchmarks could optimize for different types of

user jobs.

- We need many benchmarks.

2% Fermilab

Manual vs Automated Benchmarking

- Many different new platforms are added all the time.
- Tailored benchmarks could optimize for different types of

user jobs.

- We need many benchmarks.

- Manual Benchmarking is labor-intensive.

10

2% Fermilab

Manual vs Automated Benchmarking

- Many different new platforms are added all the time.
- Tailored benchmarks could optimize for different types of

user jobs.

- We need many benchmarks.
- Manual Benchmarking is labor-intensive.

v

We need automation!

11

2% Fermilab

Automated Benchmarking via Glideins

GlideinWMS is a workload management
system, which uses HTCondor to send
Glideins and provision resources.

We want to leverage Glideins to run the
benchmarks. User GlideinWMS CorralWMS

Jobs Frontend Frontend

s
, N

User Pool Glidein Factory
(Condor) & WMS Pool
R T

Y Y

Grid Sites

Worker Worker /| Worker

12

2% Fermilab

Manual vs GWMS Automated Benchmarking

Manual

13

Labor-intensive
Can run as root
Run on barebone

hardware or VM
Easier to customize

Limited resources
Controlled environment

Automated via GWMS

Easier to run
Unprivileged only
Run as container

Standard versions
Easier to scale
Run on provided resource

Running benchmarks in Glideins

14

Containers provide a standard environment.

Apptainer can run unprivileged.

CVMFS can provide multiple benchmarks in expanded
iImages.
Find root-less benchmarks.

#!/bin/sh
glidein_config="$1"

find error reporting helper script
error_gen="grep 'AERROR_GEN_PATH ' "$glidein_config" | awk ‘{print $2}'~

cd "$TMP"
OUTPUT_DIR="$TMP/atlasgenbmk™

if [! -d "$0OUTPUT_D: 1; then
echo "$OUTPUT_DIR" does not exist. Trying to create it...
if | mkdir -p "$OUTPUT_DIR"; then
"$error_gen" -error "atlasgenbmk.sh" "WN_Resource" "Could not create $OUTPUT_DIR"
exit 1
fi
fi

COUNT="cat /proc/cpuinfo | grep -c processor
singularity run -i -c -e -B "$OUTPUT_DIR":/results /cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/atlas-gen-bmk:v2.1 -W --threads $COUNT --events 100
#for future use, change the events to something else other than 10. 10 is just to test if the script works well under gwms

if [-f "$OUTPUT_DIR/atlas-gen_summary_new.json"]; then
OUTPUT_DIR"/atlas-gen_summary_new.json

"$error_gen" -error "atlasgenbmk.sh" "WN_Resource" "Could not find $OUTPUT_DIR/atlas-gen_summary_new.json"

exit 1
fi
“$error_gen" -ok "atlasgenbmk.sh"
exit o

2% Fermilab

3% Fermilab

GlideinBenchmark

Web application/dashboard to automate benchmarks via
GlideinWMS.

Two components:
- the runner triggers and monitors the benchmark execution
- the viewer serves and displays the results

Works with existing GlideinWMS L

deployments Worker Node
Glidein
{ Benchmark]

GB Runner

Glidein GB Viewer

Benchmark

15

3% Fermilab

Runner

Executes on the desired resources the benchmark
selected by the user by controlling the GWMS Factory:

- On-demand benchmarks are triggered via HTCondor job
submissions.

- Automatic benchmarks are executed as
Glidein test and enabled by modifying .

1
the Factory Worker Node
configuration. CE Glidein

Monitors the execution. S | Benchmark |

GB Runner

GB Viewer

Glidein
Benchmark

16

Viewer

Web dashboard serving via a RESTful interface and

3% Fermilab

// ‘

displaying the benchmark results.

17

GB Runner

Worker Node
Glidein
{ Benchmark]

Glidein

GB Viewer

Benchmark

2% Fermilab

Thank you and Acknowledgements

This work was done under the DOE Omni Technology Alliance
Internship Program by ORISE

This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy, Office of Science, Office of
High Energy Physics.

Thank you Throughput Computing 23 for hosting such an
amazing event and for facilitating my attendance.

18

2% Fermilab

Summary

- Benchmarking overall is a very useful tool in summarizing
performance of a machine and to optimize resource
provisioning.

- Automated benchmarking is needed to run updated
benchmarks on all the resources.

- GlideinBenchmark is a web application I’'m developing that
leverages Glideins and HTCondor to submit customized
benchmarks. Experiments can use it to rank the resources
and reduce their execution costs.

19

