HTCondor at BNL SDCC

Kevin Casella Tom Smith Christopher Hollowell
kac@bnl.gov tsmith@bnl.gov hollowec@bnl.gov

13 July 2023 – Throughput Computing 2023
SDCC: The Scientific Data and Computing Center

- Located at Brookhaven National Laboratory (BNL) on Long Island, New York
- SDCC initially formed at BNL in the mid-1990s as the RHIC Computing Facility

Shared multi-program facility serving ~2,000 users from more than 20 projects
Scientific Data and Computing Center Overview

- Tier-0 computing center for the RHIC experiments
- US Tier-1 Computing facility for the ATLAS experiment at the LHC, also one of the ATLAS shared analysis (Tier-3) facilities in the US
- Computing facility for NSLS-II
- US Data center for Belle II experiment
- Providing computing and storage for proto-DUNE/DUNE along with FNAL serving data to all DUNE OSG sites
- Also providing computing resources for various smaller / R&D experiments in NP and HEP
- Serving more than 2,000 users from > 20 projects
- Developing and providing administrative/collaborative tools:
 - Invenio, Jupyter, BNL Box, Discourse, Gitea, Mattermost, etc.
- sPHENIX - commissioning run has started
- BNL was selected as the site for the upcoming major new facility Electron-Ion Collider (EIC/eRHIC)
High Throughput Computing @ SDCC

- Providing our users with ~1,700 HTC nodes:
 - ~121,000 logical cores
 - Managed by HTCondor

- All nodes running Scientific Linux (SL) 7
 - Preparations for an OS upgrade to Alma Linux 9 in progress

- HTCondor 9.0.X -> 10.0.X upgrade in progress

ATLAS Pool
- ~500 HTC nodes:
 - ~35,000 logical cores

- ATLAS tier 1 worker nodes upgraded to Condor 10.0.3

Shared Pool
- ~1,200 HTC nodes:
 - ~86,000 logical cores

- Large portion of this pool is new Supermicro nodes
Computing Expansion (2023)

- Largest computing expansion to date
- Purchased 648 Supermicro SYS-610C-TR nodes for ATLAS and the RHIC experiments (~62k logical cores total)
 - Housed in 20 racks
 - System specs:
 - Dual Intel Ice Lake Xeon Gold 6336Y 24-core processors
 - 12x32 GB 3200 MHz ECC DDR4 RAM (384 GB total)
 - 4x2 TB SSD drives
 - 1U form factor
 - 10 Gbps NIC
- Will be receiving some Supermicro ARM test nodes Aug/Sep
 - With Ampere Altra CPUs
- All nodes running Scientific Linux (SL) 7
 - Condor 10.0.X installed

Supermicro SYS-6019U-TR4 Servers
Concord/Condor CE Upgrade

- Upgrade from Condor 9.0.x to 10.0.X and Condor CE from 5.1.5-1 to 6.X
- To minimize downtime, we upgrade in systems in batches of several racks at a time
- Worker/execute nodes upgraded first, then CEs and submit nodes, and collector/negotiator will be upgraded last
- Cross-version compatibility was tested to ensure this would not impact production

<table>
<thead>
<tr>
<th>collector / negotiator</th>
<th>schedd (interactive submit)</th>
<th>schedd / Condor CE (grid submit)</th>
<th>startd (execute nodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0.x</td>
<td>9.0.x</td>
<td>9.0.x (condor) 5.1.5-1 (CE)</td>
<td>Both 9.0.x / 10.0.1</td>
</tr>
<tr>
<td>9.0.x</td>
<td>9.0.x</td>
<td>10.0.1 (condor) 5.1.6-1 (CE)</td>
<td>Both 9.0.x / 10.0.1</td>
</tr>
<tr>
<td>9.0.x</td>
<td>10.0.1</td>
<td>10.0.1 (condor) 5.1.6-1 (CE)</td>
<td>Both 9.0.x / 10.0.1</td>
</tr>
<tr>
<td>10.0.1</td>
<td>10.0.1</td>
<td>10.0.1 (condor) 5.1.6-1 (CE)</td>
<td>Both 9.0.x / 10.0.1</td>
</tr>
</tbody>
</table>

- **Done**: ATLAS Tier1 worker nodes, new Supermicro shared pool worker nodes, next generation CE test system
- **In Progress**: ATLAS/grid CEs upgrade, shared pool worker nodes
- **To do**: Shared pool CEs, all pool collector/negotiators, all interactive submit nodes
Monitoring Redesign for Scalability

submit host
Data Source
/var/log/condor/sdcc/SchedLog
Filebeat

submit host
Data Source
SchedLog*
Filebeat

submit host
Data Source
SchedLog*
Filebeat

grok user slot start stop etc. aggregate per job_ID

Logstash

Indexed Logs & Data

Elasticsearch

Visualizations Graphs & Charts

Kibana

htcondor-*

User (Analytics)
Monitoring Redesign for scalability

- Filebeat service runs on CEs and Submit nodes (~100 hosts)
 - A Logstash instance runs on one server
 - Input source is the log file /var/log/condor/sdcc/SchedLog
 - Output sent to 3 servers running Elasticsearch service

- Filebeat service previously ran on workernodes (2,000+ hosts)
 - This required multi-Logstash and the Lumberjack plugin
 - Lumberjack transported events between Logstash instances
Grok Filter Plugin

Sample Data
1 09/02/21 13:45:57.702 (pid:1890) Started shadow for job 5471877.6 on slot1@bnl.gov <-9618?addr=-9618

Grok Pattern
1 %{DATE:date} %{TIME:time} \(%{DATA:pid}\) Started shadow for job %{BASE10NUM:jobID} on %{EMAILADDRESS:slot} %{NOTSPACE:IP_blob} for %{NOTSPACE:u

Custom Patterns

Structured Data
1 { 2 "date": "09/02/21",
3 "user_and_group": "group_star.cos.nish",
4 "jobID": "5471877.6",
5 "shadow_PID": "(shadow pid = 11107)",
6 "IP_blob": "=9618?addr=-9618&noUDP&sock=18020_33b6_3=#1628806802#17433#...",
7 "pid": "pid:1890",
8 "time": "13:45:57.702",
9 "slot": "slot1@b.nl.gov"
10 }
aggregate {
 task_id => "\%{jobID}\"
 code => "
 map['user_and_group'] ||= event.get('user_and_group')
 map['slot'] ||= event.get('slot')
 map['execution_host'] ||= event.get('execution_host')
 map['user'] ||= event.get('user')
 "
 map_action => "create"
 }

aggregate {
 task_id => "\%{jobID}\"
 code => "
 event.set('user_and_group', map['user_and_group'])
 event.set('slot', map['slot'])
 event.set('execution_host', map['execution_host'])
 event.set('user', map['user'])
 "
 map_action => "update"
 end_of_task => true
 timeout => 604800
 }
Kibana Discover
Conclusions

- SDCC provides a batch computing capacity of over 120k cores to 2,000+ users in more than 20 projects
 - We’ve been using HTCondor for nearly 20 years

- HTCondor 10.0.x upgrade in progress
 - Upgrading in a rolling manner to minimize downtime
 - Completed on all US ATLAS T1 compute nodes

- We’ve implemented custom ELK monitoring of Condor jobs at our facility
 - Recently re-designed to improve scalability
 - Changed from collecting data on all workernodes to submit nodes only
Questions & Comments

Kevin Casella
kac@bnl.gov

Tom Smith
tsmith@bnl.gov

Christopher Hollowell
hollowec@bnl.gov

13 July 2023 – Throughput Computing 2023