Building a Workflow

Christina Koch
Throughput Computing 2023
July 12, 2023
Open an internet browser and enter:
https://notebook.ospool.osg-htc.org
Log into an OSPool Access Point

Login using any of the available authentication options. Some choices:

• NIH login
• Google (i.e. gmail)
• GitHub
• ORCID
Launch Data Sciences Notebook

1. Click the “Data Science” or “Basic” box
2. Click orange “Start” button
Log into an OSPool Access Point

Open a Terminal
Jupyter Access Point

Access Point
/home/user

HTCondor

Execute Point
/condor/scratch

HTC23 - Workflow Demo
7/12/23
Use Cases
Job Component Vocabulary

Arguments (text input)

Input Files

Executable

Software Environment

Output Files

Standard error and output (text output)

Job

HTC23 - Workflow Demo 7/12/23
Analyzing Multiple Files

- **Software**: bwa aligner
- **Executable**: Shell script with bwa commands
- **Arguments**: None (for now...)
- **Input files**:
 - Many pairs of fastq files
 - Reference file
- **Output files**: aligned .sam files

Ben Bioinformatics

Needs to process 100s of genomic data files.
Use Case 1: Analyzing Multiple Files

- **Software**: bwa aligner
- **Executable**: Shell script with bwa commands
- **Arguments**: None (for now...)
- **Input files**:
 - Many pairs of fastq files
 - Reference file
- **Output files**: aligned .sam files

```
universe = container
container_image = bwa.sif

executable = bwa.sh
#arguments =

transfer_input_files = R1.fastq, R2.fastq, ref.fastq, bwa.sif
#transfer_output_files =

error = test.err
output = test.out

queue 1
```
In Jupyter

In an opened terminal, run:

$ tutorial bwa

Then click on the downloaded folder (tutorial-bwa) and open the "README.ipynb" file.
Job Component Vocabulary - Expanded

What Varies

Arguments (text input)

Unique Input Files

Shared Input Files

Executable

Software Environment

Standard error and output (text output)

Output Files

Job \(\times N \) unique inputs = workload
Analyzing Multiple Files

```bash
executable = bwa.sh
#arguments =

transfer_input_files =
SRR1.R1.fastq, SRR1.R2.fastq, ref.fastq, bwa.sif

transfer_output_remaps =
“SRR1.sam=results/SRR1.sam”

error = test.err
output = test.out

queue 1
```

```bash
executable = bwa.sh
arguments = $(sample)

transfer_input_files =
$(sample).R1.fastq,
$(sample).R2.fastq, ref.fastq, bwa.sif

transfer_output_remaps =
“$(sample).sam=results/$(sample).sam”

error = test.$(sample).err
output = test .$(sample).out

queue sample from list.txt
```
In Jupyter

Continue working with the bwa tutorial.
Apply to Your Workflow

• Processing MRI or other imaging data
• Molecule/protein docking
• Simulations that are described by an input file
• Feature extraction
• …anything that has many unique input files, each representing a self-contained job producing unique output.
Building a Workload
Patterns for Scaling Out

• **“What is a job?”**
 • Define your unit of work and how many you need to run
 • Identify components (shared and unique/varied) of a single job

• **Generate Inputs**
 • Do you need to generate unique input files?
 • How about a list of inputs for your jobs?

• **Plan to summarize**
 • What steps, if any, are needed to combine results?
Patterns for Scaling Out

• **Write modular code**
 • Write one executable that 1) takes in unique inputs and 2) produces unique outputs.

• **Think about organization**
 • How do you want to arrange the components for your jobs?

• **Test, test, test**
 • Always test one job, then a small batch before doing a large run.
 • How much space is needed for job components?
Additional Considerations

• **Software environment**
 • Have to bring along a software environment
 • Containers – we provide a few, have directions how to build yourself
 • File-based – bring along binary files or zipped software directories
 • (Conda environments can be used this way)
Additional Considerations

• **Data movement**
 • For input/output files between 1 – 20GB, need a scalable data staging tool
 • Open Science Data Federation
 • Network of data origins and caches to efficiently move data
 • Most OSPool Access Points have an associated data origin.
Additional Considerations

• Multi-Step workflows
 • DAGMan – comes with HTCondor
 • Pegasus - https://pegasus.isi.edu/
Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 2030508. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.