
Dang Aah Grrr Managing
Workflows is Difficult

An Intermediate HTCondor DAGMan Tutorial
By: Cole Bollig

Software Developer for CHTC
Throughput Computing 2023

DAGMan Introductory Material
• Previous Tutorials/Presentations
• HTCondor Week 2022 DAGMan Introduction Tutorial
• HTCondor Week 2014 Advance DAGMan Tutorial
• HTCondor Week 2014 Introductory DAGMan Tutorial

• DAGMan Documentation
• HTCondor DAGMan Documentation
• HTCondor DAGMan Documentation (OLD)

https://www.youtube.com/watch?v=OuIBf6x24r0&ab_channel=CenterforHighThroughputComputing
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/HTCondor_and_Workflows_Advanced.html
https://research.cs.wisc.edu/htcondor/tutorials/videos/2014/Intro_To_Workflows_DAGMan.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html
https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

Quick Refresher
• DAGMan is a Directed Acyclic Graph (DAG) Manager that is

used to help automate a workflow of jobs.
• A DAG is comprised of Nodes and Edges.
• A Job is the core of a DAG Node

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

PARENT A CHILD B C
PARENT B C CHILD D

A

B C

D

diamond.dag Diamond DAG visualized

Important Knowledge
• Submitting a DAG to HTCondor produces an HTCondor scheduler

universe job for the DAGMan process (DAGMan job proper).

Lots of files produced:
• Informational DAG files

• *.dagman.out
• *.nodes.log
• *.metrics

• DAGMan job proper files
• *.condor.sub
• *.dagman.log
• *.lib.err
• *.lib.out

= DAG progress/error output
= Collective job event log (Heart of DAGMan)
= JSON formatted DAG information

= Submit File
= Job Log
= Job Error
= Job Output

DAGMan Job Proper Classad Attributes
The DAGMan job propers classad also holds a lot of useful information:

Information About
Submitted Job Processes
• DAG_JobsSubmitted
• DAG_JobsIdle
• DAG_JobsHeld
• DAG_JobsRunning
• DAG_JobsCompleted

Information about general
DAG status
• DAG_InRecovery
• DAG_Status

• 0 = Normal
• 3 = Aborted by

ABORT_DAG_ON

Information About DAG
Nodes
• DAG_NodesDone
• DAG_NodesFailed
• DAG_NodesPostrun
• DAG_NodesPrerun
• DAG_NodesQueued
• DAG_NodesReady
• DAG_NodesUnready
• DAG_NodesFutile
• DAG_NodesTotal

Full descriptions of these attributes can be found in the HTCondor Job Classad
Attributes Documentation

To view attributes run: condor_q –l <JobId> | grep DAG_

https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html
https://htcondor.readthedocs.io/en/latest/classad-attributes/job-classad-attributes.html

Rerunning a DAG

Dataflow Jobs
• Use the job submit command skip_if_dataflow

to skip running the job again if one of the
following is true:
• Output files exist and are newer than input files
• Execute file is newer than input files
• Standard input file is newer than input files

• Reduces the time executing jobs in large
workflows

Link to Dataflow Job Documentation

executable = my_script.sh
arguments = foo
log = $(cluster).log
error = $(cluster).err
output = $(cluster).out

skip_if_dataflow = True

queue

job.sub

https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html?highlight=skip_if_dataflow

Saved DAG Progress
• Added new saved progress file for a DAG in V10.5.0 that is kind

of like a video game save
• File is similar too a rescue file
• Written at the first start of a specified node

…
SAVE_POINT_FILE S1
SAVE_POINT_FILE S2 post_simulation1.save
SAVE_POINT_FILE S3 ./post_simulation2.save
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save
…

sample.dag

Setup

Simulation 1

Analysis Part 1

Analysis Part 2

S2

S1

S3

S4

Simulation 2

Example Workflow Visualized

Link to DAGMan Save Point File Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-save-files.html

Saved DAG Progress cont.
• Where are the save files written?

• Nodes S1 & S2 write their save files to a new subdirectory called save_files.
This directory exists in the DAG directory where all DAG files are written.

• Nodes S3 & S4 write their save files to the specified path relative to the DAG
directory.

• S1 save will be written to a file named S1-sample.dag.save
condor_submit_dag –load_save [save_file] sample.dag

If given a path then condor_submit_dag will
use that path to look for the save file.
Otherwise DAGMan looks in the save_files
sub-directory for the save files

…
SAVE_POINT_FILE S1
SAVE_POINT_FILE S2 post_simulation1.save
SAVE_POINT_FILE S3 ./post_simulation2.save
SAVE_POINT_FILE S4 ../../foo/mid_analysis.save
…

sample.dag

Oh Node!
complicating nodes with scripts

DAGMan Node Scripts
• Scripts provide a way to preform tasks at key points in a node’s

lifetime. Each script type has different execution time.
• Pre Scripts run before a Node Job is submitted to the Schedd.
• Post Scripts run after a Node Job has finished as a whole cluster

successfully or not.
• Hold Scripts run when a Nodes job goes on hold.

• All DAGMan scripts run on the Access
Point (AP) and not the Execution Point
(EP).

PRE Script

JOB
POST Script

Node

Link to DAGMan Scripts Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-scripts.html

Pre Script Example
JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SCRIPT PRE A verify.sh

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

Super cool script that
verifies all input files for
job are at least 10mb.

verify.sh
Node A Pre Script
fails making the
node as a whole
fail.

Node A Pre Script
succeeds, and the Node
A job gets submitted.

Input files < 10mb

Input files >= 10mb

Another possibility would be to have the script
manipulate Input Files (Rename, Move, Condense)

Post Script Example
JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SCRIPT POST C loop.sh $RETURN $RETRY
RETRY C 5 UNLESS-EXIT 2

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

#Takes job exit code &
#node retry attempt

if (job exit == 0)
 if (retry >= 4) { exit 0 }
 else { exit 1 }
else
 exit 2

loop.sh

• Causes Node C loop
and run 5 times.

• Looping behavior can
be added to SUBDAG
workflows too.

Other possibilities for Post Scripts:
• Verify output
• Fake a node success even though node job

failed
• Produce a file that is to be used later by the

DAG (job submit file, script, a subdag)

Hold Script Example
JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SCRIPT HOLD ALL_NODES notify.sh …

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

Script that texts user when
a job various information.

notify.sh

• Not considered part of the workflow’s
node structure.

• Is best effort.
• Runs the risk of sending lots of messages if

the DAG nodes are multi-proc.

Special Node Types
Link to DAGMan Node Types Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-node-types.html

Provisioner Node
• Good for setting up unique

resources to be used by nodes in a
DAG
• Always starts prior to other nodes
• Runs for a set amount of time

defined in the job itself
• Can only have one provisioner node

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

PROVISIONER QUANTUM cloud.sub
…

diamond.dag

VM with
Quantum

Computing and
GPUs

Collector

QUANTUM

Service Node
• The ‘sidecar node’ that runs along side the DAG and

perform tasks
• Begin running at the beginning of the DAG but isn’t

guaranteed to run before other nodes.
• Best effort. If the submit fails, the DAG will carry on.
• Is part of the DAGMan workflow to be managed and

removed

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

SERVICE MONITOR flask.sub
…

diamond.dag

An example is from James
Clarks Grid-Exorciser talk using
service nodes to wait for DAG
node jobs to run and testing
condor_ssh_to_job those jobs.

MONITOR

diamond.dag.nodes.log

Full of all the job
events for the DAG.

Flask App
Webpage showing
DAG Progress and

Monitoring

Final Node
• Always the last node to run

whether the DAG has
aborted or completed
successfully
• Good for cleanup and

verifying output of previous
node
• Can only be one final node in

a DAG

JOB A job1.sub
JOB B job2.sub
JOB C job3.sub
JOB D job4.sub

FINAL END cleanup.sub
…

diamond.dag

A

B C

D

Diamond DAG visualized

END

DAG Aborting

DAG Success

Comprising a Workflow Using
Workflows

Link to DAGMan Comprising Workflows with Workflows Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html

SPLICE
• Splices have their nodes merged into the

parent DAG
• Allows easy reusability
• Low strain on the Access Point (AP)
• All splice files must exist at submit time
• Pre and Post scripts cannot run on

splices as a whole
• Splices can not use the RETRY

capability

A

C

SPLICE X

X+A X+B

X+C

X+EX+D

JOB A job.sub
SPLICE X cross.dag
JOB C job.sub

PARENT A CHILD X
PARENT X CHILD C

sample.dag

SUBDAG EXTERNAL
• To the parent DAG it is just a

single node
• Can use RETRY
• Can have Pre and POST Script

• Submits as another DAG to the
Schedd that has its own
DAGMan job process and output
files.
• DAG file and nodes don’t need to

exist at submission time of
parent DAG
• Good for running sub-workflows

where the number of jobs is not
predefined

JOB A job.sub
SUBDAG EXTERNAL SIM simulation.dag
JOB C job.sub

SCRIPT POST SIM …
RETRY 10 SIM

PARENT A CHILD SIM
PARENT SIM CHILD C

A

SIM

C

SUBDAG That runs and manages its
own DAG in the Queue to analyze
some data.

sample.dag

SUBDAG Example (DAG make DAG)

This is an example diagram to show a
user how to set up a DAG that
creates and unknown number of
DAGs and subsequently runs them.

Miscellaneous Useful Features

Reuse One Submit Description with VARS
• Using the VARS command in the DAG description file creates

macros to be used by the job submit description.
• Allows one job submit description to be used for many DAG

nodes.
JOB A job1.sub
JOB B same.sub
JOB C same.sub
JOB D job4.sub

VARS B country=“USA”
VARS C country=“Canada”

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

executable = my_script.sh
arguments = $(country)
log = $(country)-$(cluster).log
error = $(country)-$(cluster).err
output = $(country)-$(cluster).out

queue

same.sub• Can pass custom Job Ad
attributes to Node jobs using
My. syntax.

• Also has special macros
• $(JOB) becomes node

name
• $(RETRY) becomes

current retry attempt
• Use PREPEND/APPEND

keyword to use VARS macros
in submit description if/else
conditionals

Link to DAGMan VARS Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-vars.html

DOT File
• DAGMan can produce a DOT file

to easily help visualize a DAG
utilizing the AT&T Research
Labs graphviz package

…
DOT dag.dot
…

sample.dag

dot -Tps dag.dot -o dag.ps

Link to DAGMan Dot Files Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-DOT-files.html

Custom Config & Node Priorities
DAGMan has lots of configuration options that
can be applied on a per DAG basis.
• Only one config file can be added for a

DAGMan process
• Can help throttle various aspects of the DAG

to reduce strain on the Schedd
• Notable Config Options for Users:

• DAGMAN_SUBMIT_DEPTH_FIRST
• Has DAG prioritize submitting

nodes depth first rather than
default breadth first.

• DAGMAN_NODE_RECORD_INFO=Retry
• Automatically add the nodes retry

attempt to the job ad.
• DAGMAN_PUT_FAILED_JOBS_ON_HOLD

• Resubmit a job in the hold state if
all retries are used and job failed.

Link to DAGMan Custom Configuration Documentation
Link to DAGMan Configuration Options

One can specify the priority of a node in a DAG
to prioritize that nodes start/submission. This
way if multiple nodes become ready at the same
time, then the nodes are run based on the node
priorities set in the DAG.
Link to DAGMan Node Priotities Documentation

JOB A job.sub
JOB B job.sub
JOB C job.sub
JOB D job.sub

PRIORITY B 100
CONFIG custom.conf

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-config.html
https://htcondor.readthedocs.io/en/latest/admin-manual/configuration-macros.html
https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-priorities.html

View Running DAG Information

$ condor_q 6

-- Schedd: COLES_AP@ : <127.0.0.1:49473?... @ 07/06/23 10:14:23

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

colebollig diamond.dag+6 7/6 10:14 _ _ 1 4 7.0

$ condor_q –nobatch -dag 6

-- Schedd: COLES_AP@ : <127.0.0.1:49473?... @ 07/06/23 10:14:25

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 6.0 colebollig 7/6 09:18 0+00:00:11 R 0 0.5 condor_dagman ...

 7.0 |-A 7/6 09:18 0+00:00:00 I 0 0.1 /bin/sleep 15

• Standard way to view a running DAG is with condor_q. Normally
this will show a condense batch view of job process running
under for this DAG.

• The use of –nobatch -dag breaks out each individual job cluster
into their own lines with the associated Node names.

$ htcondor dag status 6
DAG is running since 0h1m14s
Of 4 total jobs:
2 are currently running
0 are idle
0 are held
1 completed successfully

Currently displays the following but may
expand in the future. (Stay tuned for
Todd’s talk of New Features Thursday
Afternoon)

Questions?

