
HTCondor for Non-Humans
Todd L Miller

Center for High-Throughput Computing

Slicers and Droids

Monitoring
● REST API
● event log
● condor_adstash

Control
● Command-line interface
● Python bindings

The read-only REST API

● REST APIs are a common Web standard, even usable from bash.
● Not in the HTCondor manual; see the GitHub page.
● Provided by a WSGI application using the HTCondor Python bindings.
● Returns JSON blobs about the job queue, history, config, and machine status.
● Not currently officially supported.

○ Let us know if you end up using it!

● See recorded talk from HTCondorWeek 2020 for more details.

https://github.com/htcondor/htcondor-restd
https://indico.cern.ch/event/936993/contributions/4022107/

Event Logs (A New Hope)

040 (1295.000.000) 2022-05-03 12:01:23 Started transferring input files
 Transferring to host: <1.2.3.4:42717…>
…
040 (1295.000.000) 2022-05-03 12:01:23 Finished transferring input files
…
001 (1295.000.000) 2022-05-03 12:01:24 Job executing on host: <1.2.3.4:42717?…>

● Set log = file.log in your job descriptions.
● You can use condor_userlog to generate interesting summaries.
● You can use condor_wait instead of polling on job completion.
● Use condor_watch_q, not watch condor_q.

○ No schedd load!
○ Built on the Python JobEventLog API, which you could also use…

https://htcondor.readthedocs.io/en/latest/man-pages/condor_userlog.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_wait.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_watch_q.html
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html#reading-job-events

Global Event Logs (The Administrator Strikes Back)

● Set EVENT_LOG = $(LOG)/GlobalEventLog in your HTCondor config.
○ Creates a single file to which the events about all jobs in a given schedd are written.

● Can add job ClassAd attributes to global event log events by setting
EVENT_LOG_JOB_AD_INFORMATION_ATTRS.

○ Helps you look for jobs or events of particular interest, e.g., GPU requests.
○ Partially obsoleted by execute event attributes in 10.6

● The global event log can also be written in JSON:
EVENT_LOG_FORMAT_OPTIONS = JSON, UTC_TIMESTAMP

○ Can ease interoperation with other monitoring systems or tools.

https://htcondor.readthedocs.io/en/latest/admin-manual/configuration-macros.html#EVENT_LOG
https://htcondor.readthedocs.io/en/latest/admin-manual/configuration-macros.html#EVENT_LOG_JOB_AD_INFORMATION_ATTRS
https://htcondor.readthedocs.io/en/latest/admin-manual/configuration-macros.html#EVENT_LOG_FORMAT_OPTIONS

condor_adstash

● Forwards condor_schedd and/or condor_startd job histories to ElasticSearch.
○ Can also write the JSON results to a file, instead.
○ Keeps track of up to where in the history it's reported.

● See the man page.
● (Also look up condor_gangliad if you've already got Ganglia set up.)

https://htcondor.readthedocs.io/en/latest/man-pages/condor_adstash.html

schedd and startd cron

● The output of a daemon ClassAd hook modifies that daemon's ClassAd.
○ Can be run once at a start-up, at each reconfig, periodically, or continuously.

● Useful for running health checks on a machines, e.g., HAS_CVMFS might be
tested from time to time and be important for match-making.

● Can help with monitoring or accounting on a schedd.
○ Modifying the schedd's ad is less important, but you don't have to have a

separately-configured cron job, and you can select between killing a job that's still running at
the start of its next period (and running the new instance) or letting it finish.

https://htcondor.readthedocs.io/en/latest/admin-manual/configuration-macros.html#configuration-file-entries-relating-to-daemon-classad-hooks-startd-cron-and-schedd-cron

Command-Line Interface

● condor_q options and condor_status options
○ -format for machine-readable custom output
○ -json for machine-readable standard output
○ -print-format format templates

● The htcondor noun-verb tool
○ job, jobset, dag, eventlog, annex

● condor_chirp (or htcondor.htchirp) and condor_ssh_to_job
○ job-specific monitoring

■ update job ad
■ write message to job event log (ulog command)

○ call-and-response computational steering?

https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html#options
https://htcondor.readthedocs.io/en/latest/man-pages/condor_status.html#options

Why did it have to be snakes?

Five Python modules in the bindings:

● classad - parsing, creating, and modifying ClassAds and expressions
● htcondor - job submission, configuration, daemon control, event logs

● htcondor.htchirp - jobs modifying their own ads, doing file transfer
○ pure Python implementation to simplify distribution with a job

● htcondor.dags - trying to make generating DAG files easier
● htcondor.personal - control "personal" installs, suitable for testing

https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/classad.html
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htcondor.html
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/htchirp.html
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/dags.html
https://htcondor.readthedocs.io/en/latest/apis/python-bindings/api/personal.html

The htcondor Python module

● Query the collector, the schedd, or other daemons (startd) directly.
● Access the HTCondor configuration system.
● Submit jobs.
● Manage credentials.
● Turn daemons on or off or reconfigure them.
● Drain startds.
● Poll or wait for job events.

● We have interactive tutorials.
● There's a recorded tutorial from last year.

https://htcondor.readthedocs.io/en/latest/apis/python-bindings/tutorials/index.html
https://agenda.hep.wisc.edu/event/1733/contributions/25489/

Mat Told Me to Include This Slide

local_provider_name = htcondor.param.get('LOCAL_CREDMON_PROVIDER_NAME')

if local_provider_name is None:

 print('Local provider not named, aborting.')

 exit(1)

magic = f"LOCAL:{local_provider_name}"

binary_magic = bytes(magic, 'utf-8')

credd = htcondor.Credd()

credd.add_user_cred(htcondor.CredTypes.Kerberos, binary_magic)

Questions?

