
Getting Your Data with 
HTCondor 

July 12, 2023
Mátyás ("Mat") Selmeci

Justin Hiemstra



Getting Your Data With HTCondor
● This talk is about why you should let HTCondor manage jobs' data 

transfer, and how you can do so

● Todd Tannenbaum gave this talk four years ago: 
https://indico.cern.ch/event/817927/contributions/3570472/

● The principles are the same, but we've done some new work since 
then, and have plans for the future...

2

https://indico.cern.ch/event/817927/contributions/3570472/


If you just wanted to use your data in a job...

3



You could use a shared file system...
● If you're just running locally, you could read/write in your jobs to a 

shared file system

● Shared file systems are nice and convenient when everything works

● Every file is (as far as you can tell) already there

4



You could download stuff right in the job...
● Put some curl or wget calls in your job script

● Works on your laptop, works on most sites most of the time

5



... so why shouldn't you?
● Shared file systems are nice and convenient when everything 

works

● curl or wget work on most sites most of the time

● Failures happen -- how do you spot them?

6



How do you debug failures?
● If everything is being done in the middle of the job, all failures look 

like job failures

● Couldn't read input data? Job terminates early, go dig through the 
logfiles to figure out why

● Program crash? Job terminates early, go dig through the logfiles to 
figure out why

● Couldn't write output data? Job terminates without output data, go 
dig through the logfiles to figure out why

7



Jobs are in stages

8

Transfer Input

Execution

Transfer Output

If one stage fails, do not go to on to the next.



Then, HTCondor can manage the stages

9

Transfer Input

Execution

Transfer Output

Transfer_Input_Files = input1.dat,input2.dat

Executable = process_all_the_things.py

Transfer_Output_Files = output.csv



What input failures look like

10

● A failure in the Transfer Input stage results in a job going on hold. 
condor_q -hold will show something like:

   1.0   submituser      7/11 06:16 Transfer input files failure at execution point 
slot1@mini using protocol https. Details: The requested URL returned error: 404 Not 
Found ( URL file = https://pages.cs.wisc.edu/~matyas/nonexistant-input )|

   2.0   submituser      7/11 06:17 Transfer input files failure at access point mini 
while sending files to execution point slot1@mini. Details: reading from file 
/home/submituser/nonexistant-input: (errno 2) No such file or directory



What output failures look like

11

● A failure in the Transfer Output stage results in a job going on hold. 
condor_q -hold will show something like:

   3.0   submituser      7/11 06:19 Transfer output files failure at execution 
point slot1@mini while sending files to access point mini. Details: reading from file 
/var/lib/condor/execute/dir_568/my-nonexistent-output: (errno 2) No such 
file or directory



How to do have HTCondor do it
● File transfer from the AP (via HTCondor built-in file transfer)
● File transfer from outside the AP (via URL-based file transfer)
● OSDF

● Each with pros and cons
● Can mix and match

12



HTCondor's built-in file transfer
● transfer_input_files=file1,file2,directory1

● Transferred from/to the Access Point's file systems via HTCondor's 
own network protocols

● Pros:
○ Nothing for the admin to set up
○ Straightforward to use - user lists file paths from the AP's disk

● Cons:
○ Puts load on the Access Point
○ No caching

13



HTCondor's built-in file transfer is good for:
● Files that frequently change

○ Job scripts, programs
○ Lack of caching is an advantage, not a drawback

● Smaller file sets
○ "Smaller" defined between you and your AP admin

■ Data point: Current OSPool APs have 20 Gbps uplink; we tell OSPool AP users: 'max 
1 GB per job via built-in file transfer'

14



URL/Plugin based file transfer
● transfer_input_files=https://host.com/file1,https://host.com/file2

● Self-hosted or third-party-hosted
○ HTTP(S), WebDAV, FTP, S3 (protocol)

● Cloud
○ OneDrive, Google Drive, Amazon S3, Box.com

● This is how you replace curl/wget

15



URL/Plugin based file transfer
● Pros:

○ Standardized protocols - features like HTTP caching may be available
○ Can leverage existing infrastructure provided by your institution or a cloud 

vendor
○ Data does not need to live on the Access Point

● Cons:
○ AP admin needs to set up auth for private data or for writing output
○ AP admin needs to obtain API keys for cloud services -- different 

instructions for each service

16



OSDF
● transfer_input_files=osdf:///chtc/PUBLIC/matyas/input1.dat
● See Brian and Fabio's talk 

https://agenda.hep.wisc.edu/event/2014/contributions/28482/ 
● Widely deployed caching infrastructure for Open Science
● Origins often deployed along with Access Points
● Pros:

○ Handles large reusable files (containers, common data sets) well
● Cons:

○ Write-once: if you want to change a file, also change the name
○ Auth needs to be set up for writing and reading private data

17

https://agenda.hep.wisc.edu/event/2014/contributions/28482/


Those were the basics...
What's new? What's changed?

18



New Since HTCondor 9.0.X
• Google Cloud support: We've added support for gs://-style Google Cloud Storage URLs, with the corresponding 

gs_access_key_id_file and gs_secret_access_key_file aliases. Available in 9.1.3

• Improved error messages: When jobs experience a file transfer error and are placed on hold, the HoldReason is now set to 

indicate whether the error was an error transferring input or output (TransferInputError/TransferOutputError ). 

Available in 9.11.1

• Introduction of new file transfer plugins: HTCondor now supports file transfers using stash:// & osdf:// URLs. Plus, these 

files are managed by HTCondor! Available in 10.0.1

• Introduction of MAX_FILE_TRANSFER_PLUGIN_LIFETIME: File-transfer plug-ins may no longer take as long as they like to 

finish. Available in 10.2.0

• Behavior changed for submit file's output_destination: Logs generated through HTCondor's stdout and stderr are no 

longer transferred to output_destination – instead they now return to submit directory. Available in 10.3.0

19



Gearing Up for What's Next…
• Integration with LotMan library: Admins will have more control over 

jobs that spool input. 

• Jobs requesting unavailable amounts of disk will be held before files are 

transferred to spool

• Additional metrics supplied for admins curious about how spool is being 

used (or maybe why it's filling up)

20



Gearing Up for What's Next…
• More & better transfers with OSDF plug-in:

• Addressing issues of object immutability 

21



Gearing Up for What's Next…

AP EP

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:

22



Gearing Up for What's Next…

AP EP

Give me 
"/foo"

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

Origin

Files:
/foo

Cache

Files:

I don't have 
"/foo", I'd 
better get it!

23



Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

Give me 
"/foo"

24



Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

4. The cache now delivers 
/foo to the EP Here's 

/foo!

25



Gearing Up for What's Next…
• More & better transfers with OSDF plug-in:

• Addressing issues of object immutability 

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission
1. User submits a job, 

specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

4. The cache now delivers 
/foo to the EP

5. The job continues on its 
merry way

Files:
/foo

26



The user realises there was a mistake in /foo, so they modify its 
contents, producing /foo…

27



Gearing Up for What's Next…

AP EP

Second Job Submission w/ 
Modified /foo

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:
/foo

28



Gearing Up for What's Next…

AP EP

Give me 
"/foo"

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

Origin

Files:
/foo

Cache

Files:
/foo

I have 
"/foo"!

29



Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache, unaware of 
the difference between 
/foo and /foo, delivers 
/foo to the EP

Here's 
/foo!

30



Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache, unaware of 
the difference between 
/foo and /foo, delivers 
/foo to the EP

4. The job continues, but 
with the WRONG version 
of "/foo"!

Files:
/foo

31



Why not just modify the cache?
• The cache is built on XRootD, and there's no built-in mechanism to 

achieve this.
• OSDF was originally built to serve datasets for Big Science

• Your datasets shouldn't be changing!

• Calculating checksums from file contents for large files is expensive – 
we don't want to do this

32



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:
/foo

33



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

Origin

Files:
/foo

Cache

Job intercepted 
by Shadow Hook

Files:
/foo

34



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Reupload /foo 
as 
/foo.<HASH>

Files:
/foo

35



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Request 
/foo.<HASH>

Files:
/foo

36



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Give me 
"/foo.<HASH>"

Files:
/foo

37



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Files:
/foo
/foo.<HASH>

Files:
/foo.<HASH>

38



Questions?
Have an interesting use case? Unconvinced that HTCondor can transfer 
your particular set of files?

We'd love to hear about it!

39

This material is based upon work supported by the National Science Foundation under 
Grant No. 2030508. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect the views 
of the National Science Foundation.


