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Getting Your Data With HTCondor
● This talk is about why you should let HTCondor manage jobs' data 

transfer, and how you can do so

● Todd Tannenbaum gave this talk four years ago: 
https://indico.cern.ch/event/817927/contributions/3570472/

● The principles are the same, but we've done some new work since 
then, and have plans for the future...
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If you just wanted to use your data in a job...
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You could use a shared file system...
● If you're just running locally, you could read/write in your jobs to a 

shared file system

● Shared file systems are nice and convenient when everything works

● Every file is (as far as you can tell) already there
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You could download stuff right in the job...
● Put some curl or wget calls in your job script

● Works on your laptop, works on most sites most of the time
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... so why shouldn't you?
● Shared file systems are nice and convenient when everything 

works

● curl or wget work on most sites most of the time

● Failures happen -- how do you spot them?
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How do you debug failures?
● If everything is being done in the middle of the job, all failures look 

like job failures

● Couldn't read input data? Job terminates early, go dig through the 
logfiles to figure out why

● Program crash? Job terminates early, go dig through the logfiles to 
figure out why

● Couldn't write output data? Job terminates without output data, go 
dig through the logfiles to figure out why
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Jobs are in stages
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Transfer Input

Execution

Transfer Output

If one stage fails, do not go to on to the next.



Then, HTCondor can manage the stages
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Transfer Input

Execution

Transfer Output

Transfer_Input_Files = input1.dat,input2.dat

Executable = process_all_the_things.py

Transfer_Output_Files = output.csv



What input failures look like
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● A failure in the Transfer Input stage results in a job going on hold. 
condor_q -hold will show something like:

   1.0   submituser      7/11 06:16 Transfer input files failure at execution point 
slot1@mini using protocol https. Details: The requested URL returned error: 404 Not 
Found ( URL file = https://pages.cs.wisc.edu/~matyas/nonexistant-input )|

   2.0   submituser      7/11 06:17 Transfer input files failure at access point mini 
while sending files to execution point slot1@mini. Details: reading from file 
/home/submituser/nonexistant-input: (errno 2) No such file or directory



What output failures look like
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● A failure in the Transfer Output stage results in a job going on hold. 
condor_q -hold will show something like:

   3.0   submituser      7/11 06:19 Transfer output files failure at execution 
point slot1@mini while sending files to access point mini. Details: reading from file 
/var/lib/condor/execute/dir_568/my-nonexistent-output: (errno 2) No such 
file or directory



How to do have HTCondor do it
● File transfer from the AP (via HTCondor built-in file transfer)
● File transfer from outside the AP (via URL-based file transfer)
● OSDF

● Each with pros and cons
● Can mix and match
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HTCondor's built-in file transfer
● transfer_input_files=file1,file2,directory1

● Transferred from/to the Access Point's file systems via HTCondor's 
own network protocols

● Pros:
○ Nothing for the admin to set up
○ Straightforward to use - user lists file paths from the AP's disk

● Cons:
○ Puts load on the Access Point
○ No caching
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HTCondor's built-in file transfer is good for:
● Files that frequently change

○ Job scripts, programs
○ Lack of caching is an advantage, not a drawback

● Smaller file sets
○ "Smaller" defined between you and your AP admin

■ Data point: Current OSPool APs have 20 Gbps uplink; we tell OSPool AP users: 'max 
1 GB per job via built-in file transfer'
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URL/Plugin based file transfer
● transfer_input_files=https://host.com/file1,https://host.com/file2

● Self-hosted or third-party-hosted
○ HTTP(S), WebDAV, FTP, S3 (protocol)

● Cloud
○ OneDrive, Google Drive, Amazon S3, Box.com

● This is how you replace curl/wget
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URL/Plugin based file transfer
● Pros:

○ Standardized protocols - features like HTTP caching may be available
○ Can leverage existing infrastructure provided by your institution or a cloud 

vendor
○ Data does not need to live on the Access Point

● Cons:
○ AP admin needs to set up auth for private data or for writing output
○ AP admin needs to obtain API keys for cloud services -- different 

instructions for each service
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OSDF
● transfer_input_files=osdf:///chtc/PUBLIC/matyas/input1.dat
● See Brian and Fabio's talk 

https://agenda.hep.wisc.edu/event/2014/contributions/28482/ 
● Widely deployed caching infrastructure for Open Science
● Origins often deployed along with Access Points
● Pros:

○ Handles large reusable files (containers, common data sets) well
● Cons:

○ Write-once: if you want to change a file, also change the name
○ Auth needs to be set up for writing and reading private data
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Those were the basics...
What's new? What's changed?
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New Since HTCondor 9.0.X
• Google Cloud support: We've added support for gs://-style Google Cloud Storage URLs, with the corresponding 

gs_access_key_id_file and gs_secret_access_key_file aliases. Available in 9.1.3

• Improved error messages: When jobs experience a file transfer error and are placed on hold, the HoldReason is now set to 

indicate whether the error was an error transferring input or output (TransferInputError/TransferOutputError ). 

Available in 9.11.1

• Introduction of new file transfer plugins: HTCondor now supports file transfers using stash:// & osdf:// URLs. Plus, these 

files are managed by HTCondor! Available in 10.0.1

• Introduction of MAX_FILE_TRANSFER_PLUGIN_LIFETIME: File-transfer plug-ins may no longer take as long as they like to 

finish. Available in 10.2.0

• Behavior changed for submit file's output_destination: Logs generated through HTCondor's stdout and stderr are no 

longer transferred to output_destination – instead they now return to submit directory. Available in 10.3.0
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Gearing Up for What's Next…
• Integration with LotMan library: Admins will have more control over 

jobs that spool input. 

• Jobs requesting unavailable amounts of disk will be held before files are 

transferred to spool

• Additional metrics supplied for admins curious about how spool is being 

used (or maybe why it's filling up)
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Gearing Up for What's Next…
• More & better transfers with OSDF plug-in:

• Addressing issues of object immutability 

21



Gearing Up for What's Next…

AP EP

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:
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Gearing Up for What's Next…

AP EP

Give me 
"/foo"

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

Origin

Files:
/foo

Cache

Files:

I don't have 
"/foo", I'd 
better get it!
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Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

Give me 
"/foo"
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Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

4. The cache now delivers 
/foo to the EP Here's 

/foo!
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Gearing Up for What's Next…
• More & better transfers with OSDF plug-in:

• Addressing issues of object immutability 

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission
1. User submits a job, 

specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache doesn't have 
/foo, so it requests the 
object from the origin

4. The cache now delivers 
/foo to the EP

5. The job continues on its 
merry way

Files:
/foo
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The user realises there was a mistake in /foo, so they modify its 
contents, producing /foo…
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Gearing Up for What's Next…

AP EP

Second Job Submission w/ 
Modified /foo

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:
/foo
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Gearing Up for What's Next…

AP EP

Give me 
"/foo"

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

Origin

Files:
/foo

Cache

Files:
/foo

I have 
"/foo"!
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Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache, unaware of 
the difference between 
/foo and /foo, delivers 
/foo to the EP

Here's 
/foo!
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Gearing Up for What's Next…

Origin

AP EP

Cache

Files:
/foo

Files:
/foo

First Job Submission

• More & better transfers with OSDF plug-in:
• Addressing issues of object immutability 

1. User submits a job, 
specifying /foo as an 
OSDF input

2. EP requests "/foo" 
from nearest cache

3. The cache, unaware of 
the difference between 
/foo and /foo, delivers 
/foo to the EP

4. The job continues, but 
with the WRONG version 
of "/foo"!

Files:
/foo
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Why not just modify the cache?
• The cache is built on XRootD, and there's no built-in mechanism to 

achieve this.
• OSDF was originally built to serve datasets for Big Science

• Your datasets shouldn't be changing!

• Calculating checksums from file contents for large files is expensive – 
we don't want to do this
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Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

Origin

Files:
/foo

Cache

Files:
/foo
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Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

Origin

Files:
/foo

Cache

Job intercepted 
by Shadow Hook

Files:
/foo
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Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Reupload /foo 
as 
/foo.<HASH>

Files:
/foo

35



Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Request 
/foo.<HASH>

Files:
/foo
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Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Give me 
"/foo.<HASH>"

Files:
/foo
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Our upcoming solution
• Introduction of Shadow Job Hooks

AP EP

Second Job Submission w/ 
Modified /foo

1. User submits a job, 
specifying /foo as an 
OSDF input

2. Job intercepted by 
shadow hook, which does 
the following:

a. Creates a "hash" 
of /foo using 
ctime, mtime, 
filesize, and day

b. Reuploads /foo 
to Origin with new 
name of 
/foo.<HASH>

c. Modifies job's 
ClassAd to request 
/foo.<HASH> 

Origin

Files:
/foo
/foo.<HASH>

Cache

Job intercepted 
by Shadow Hook

Files:
/foo
/foo.<HASH>

Files:
/foo.<HASH>
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Questions?
Have an interesting use case? Unconvinced that HTCondor can transfer 
your particular set of files?

We'd love to hear about it!
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