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Goals for today:
• Learn the fundamental ‘jargon’ associated with access 

control in HTCSS.
• Understand the parts of the authorization handshake 

between client and server.
•Get a few debugging tips specific to token authentication.
• Learn the how security credentials are mapped into 

HTCondor identifiers and then authorized



The Basic Vocabulary
• Authentication: Establishing an ‘identifier’ for a remote entity.
• Identity Mapping: Mapping between identifiers, such as from a 

Kerberos credential to a HTCondor identifier.
• Authorization: Determining whether an entity is permitted to 

perform a certain operation.
• Encryption: Maintaining confidentiality during a session.
• Integrity: Detecting modifications to a session done during transit.
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Parameter Negotiation
• Parameter negotiation consists 

of a ClassAd sent from client to 
server followed by one from 
server to client.
• Each side states their policy on 

topics like:
• Is authentication required?
• What authentication methods 

should be used?
• Should encryption / integrity 

checking be used?



Parameter Negotiation

• It is possible for the client and 
server to have incompatible policy 
(example: no common methods).
• In this case, the server will 

abruptly close the socket.  The 
client will report the dreaded

SECMAN:2007:Failed to end 
classad message
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Authentication Methods
• IDTOKENS: Client authenticates with a JSON Web Token (JWT) 

signed by the server.
• SCITOKENS: Client authenticates with a SciToken 

(https://scitokens.org/) JWT, signed by a trust third party.
• SSL: Client and server uses the venerable TLS protocol, same as 

HTTPS.
• KERBEROS: Client and server use Kerberos authentication.
• And other, less-commonly-used options:

• NTSSPI, PASSWORD, CLAIMTOBE, ANONYMOUS, FS_REMOTE
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Authentication Protocol
• The IDTOKEN is used to establish a shared 

secret.  The public portion is sent to the 
server; if the server has the right key, then it 
can regenerate the signature.
• Now, both sides have a shared secret (the 

token signature) and can use a key 
exchange protocol (AKEP2) to demonstrate 
possession to the other side.
• The client is identified by the subject in the 

token.

Decoded



IDTOKENS - Authorizations
• As the IDTOKEN is generated by 

HTCondor, the ‘subject’ in the token is 
considered an HTCondor identifier
     -> No mapping step!
• Tokens can contain restrictions on 

allowed authorizations.
• Can only act as a restriction on what the 

token can otherwise do – does not grant 
access beyond what’s configured.



Key Concept – Trust Domains
• If the IDTOKEN subject is “native” to HTCondor, which instance?

• After all, my identifier (“bbockelm”) for CHTC is different than for the 
OSPool (“brian.bockelman.1”)!

• We have added the concept of “Trust Domain” – the set of all 
services that are run by the same administrators.
• We assume a named signing key in a trust domain always has the same 

value.
• Each server belongs to a given trust domain.  It’ll ignore tokens 

from a different trust domain.

Trip Hazard: In 10.0.0, the default value of TRUST_DOMAIN changed!  Check your 
tokens are still valid if you started using tokens in 9.x.



Finding the IDTOKEN
• There’s a defined directory 

that holds tokens for a client 
(typically, 
~/.condor/tokens.d).  
The client iterates through 
each token in the directory, 
using the first one that 
“matches”:
• “Matches” means the token 

is in the same trust domain 
as the server and signed with 
a key the server knows. 
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Authentication Protocol
• A TLS connection is established between client and server.
• The client verifies the server’s host certificate.
• The client sends the SciToken across the secure channel.
• The server verifies the token was signed using the issuer’s public 

key.
• Note:

• The client authenticates the server via TLS.
• The server authenticates the client using the token.



Finding the SciToken
• The client will send the token it finds in its environment using the 

Bearer Token Discovery protocol.
• Short version:

• Look at the contents of the $BEARER_TOKEN environment variable.
• Look at the contents of the file referred to by $BEARER_TOKEN_FILE.
• Look at the contents of $XDG_RUNTIME/bt_u$UID
• Look at the contents of /tmp/bt_u$UID

• The first token discovered is used; no matching is performed as in 
IDTOKENS.

https://github.com/WLCG-AuthZ-WG/bearer-token-discovery/blob/master/specification.md


Compare and Contrast: Token Auth’n
IDTOKENS-Specific

• Signed by the server (or 
whoever holds the 
symmetric key).

• Only verified by the 
same symmetric key.

• Discovery in a well-
known user directory.

• Not sent to server; used 
to establish a shared 
secret.

Common
• Token format is JWT; can 

be introspected with 
any common JWT tools.

• Token contains common 
JWT attributes: 
expiration, validity time, 
subject/identifier.

SCITOKENS-Specific
• Signed by third-party 

JWT issuer.
• Verified by anyone who 

can download the public 
key.

• Discovered via WLCG 
Bearer token discovery 
protocol.

• Sent to server over TLS 
(Server needs host 
certificate)
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Authentication Protocol
• Well … you know … TLS!

• It is framed using HTCSS’s CEDAR protocol, not raw TCP sockets.  
Cannot debug this with “openssl s_client”.
• About every 2 years we review the TLS crypto parameters to ensure they 

are modern (e.g., no MD5!).
• Client certificate / RFC 3820 proxy certificate is optional; the 

server can be configured to require one, however.
• Client certificate is discovered only using the value of 

AUTH_SSL_CLIENT_CERTFILE/AUTH_SSL_CLIENT_KEYFILE; 
does not follow Globus conventions



Authentication Failures
• When authentication fails, the 

client tool prints out every 
method it tried.
• It does not print out the failure 

reason for any of the 
protocols.
• Sometimes this is because the 

server provides no error 
message about the rejection.

• Enabling security debug 
logging (D_SECURITY:2) is 
necessary to debug 
authentication failures.



Authentication Failures

Compare output with debug disabled (left) versus enabled (right)
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Identity Mapping & 
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HTCSS has an ‘Identifier Mapfile’
• For identity-based schemes, the mapfile is an important tool to 

translate between authentication credentials and a HTCondor 
identifier.
• This mapfile has 3 columns: authentication method, 

authentication identifier, target HTCondor identifier.
• By default, authentication identifier is a regexp.

• Sadly, this is known as the “CERTIFICATE_MAPFILE”.



Identifier Mapfile Example

SCITOKENS "https://demo.scitokens.org" bbockelm@test.wisc.edu
SCITOKENS "https://wlcg.cloud.cnaf.infn.it/,27234843-fedf-42c8-bb81-
a1695bbd7c28" bbockelm@test.wisc.edu
SCITOKENS /^https\:\/\/osg\-htc\.org\/osdf,OSDF-(.*)@osg-htc.org$/ $1@osg-
htc.org
SSL "/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=bbockelm/CN=659869/CN=Brian 
Paul Bockelman" bbockelm@test.wisc.unl.edu
INCLUDE /etc/condor/mapfile.d



Anonymous Identifiers
• If no HTCondor identifier can be established, protocols will default 

to an anonymous one.
• Unfortunately, we spell ‘anonymous’ as…

• ‘unauthenticated@unmapped’ if no authentication is used.
• ‘unauthenticated@unmapped’ if SSL is used but no client certificate is 

presented.
• ‘ssl@unmapped’ if SSL is used, a client certificate is presented, but no 

mapping is available.
• CONDOR_ANONYMOUS_USER@CONDOR_ANONYMOUS_USER if the 

ANONYMOUS method is used.
• scitokens@unmapped if SCITOKENS is successful but no mapping is 

available.
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Authorizations
• Once a HTCondor identifier is established, we finally determine 

whether the action is allowable.
• These are controlled by the ALLOW_* / DENY_* configurations.
• The ALLOW/DENY configurations are a list of identifiers of the 

form “$identifier/$host_restriction”.  Examples:
• *@wisc.edu/124.104.3.*
• bbockelm@unl.edu
• */*.wisc.edu

• DENY entries take precedence.  If no matches for ALLOW, then 
the authorization is denied.



Authorization Failures
• Finally!  We have an 

error message.



If in doubt – condor_ping it!



Final Thoughts / TODO list
• This was a fun overview to write!
• Please view this as a framework for understanding security 

handshake failures; impossible to enumerate all the possible 
reasons.
• Some observations from my side:

• Incompatibility of settings is indecipherable from a network error.
• The failure messages never say what part of the security handshake 

failed.
• Authentication failure reasons are not in the failure messages, only the 

failure logs.
• Some great TODOs for the dev team!
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