
Security and Token Auth
Debugging

Brian Bockelman,
HTC23, Madison, WI

Goals for today:
• Learn the fundamental ‘jargon’ associated with access

control in HTCSS.
• Understand the parts of the authorization handshake

between client and server.
•Get a few debugging tips specific to token authentication.
• Learn the how security credentials are mapped into

HTCondor identifiers and then authorized

The Basic Vocabulary
• Authentication: Establishing an ‘identifier’ for a remote entity.
• Identity Mapping: Mapping between identifiers, such as from a

Kerberos credential to a HTCondor identifier.
• Authorization: Determining whether an entity is permitted to

perform a certain operation.
• Encryption: Maintaining confidentiality during a session.
• Integrity: Detecting modifications to a session done during transit.

Lifetime of a (Typical) Handshake
TCP Connection

Parameter
Negotiation

Authentication
Method #1

Authentication
Method #N…

Identifier Mapping

Authorization!

Parameter Negotiation
TCP Connection

Parameter
Negotiation

Authentication
Method #1

Authentication
Method #N…

Identifier Mapping

Authorization!

Parameter Negotiation
• Parameter negotiation consists

of a ClassAd sent from client to
server followed by one from
server to client.
• Each side states their policy on

topics like:
• Is authentication required?
• What authentication methods

should be used?
• Should encryption / integrity

checking be used?

Parameter Negotiation

• It is possible for the client and
server to have incompatible policy
(example: no common methods).
• In this case, the server will

abruptly close the socket. The
client will report the dreaded

SECMAN:2007:Failed to end
classad message

Authentication
TCP Connection

Parameter
Negotiation

Authentication
Method #1

Authentication
Method #N…

Identifier Mapping

Authorization!

Authentication Methods
• IDTOKENS: Client authenticates with a JSON Web Token (JWT)

signed by the server.
• SCITOKENS: Client authenticates with a SciToken

(https://scitokens.org/) JWT, signed by a trust third party.
• SSL: Client and server uses the venerable TLS protocol, same as

HTTPS.
• KERBEROS: Client and server use Kerberos authentication.
• And other, less-commonly-used options:

• NTSSPI, PASSWORD, CLAIMTOBE, ANONYMOUS, FS_REMOTE

W
ill

 b
e

co
ve

re
d

to
da

y

https://scitokens.org/

Authentication:
IDTOKENS

Authentication Protocol
• The IDTOKEN is used to establish a shared

secret. The public portion is sent to the
server; if the server has the right key, then it
can regenerate the signature.
• Now, both sides have a shared secret (the

token signature) and can use a key
exchange protocol (AKEP2) to demonstrate
possession to the other side.
• The client is identified by the subject in the

token.

Decoded

IDTOKENS - Authorizations
• As the IDTOKEN is generated by

HTCondor, the ‘subject’ in the token is
considered an HTCondor identifier
 -> No mapping step!
• Tokens can contain restrictions on

allowed authorizations.
• Can only act as a restriction on what the

token can otherwise do – does not grant
access beyond what’s configured.

Key Concept – Trust Domains
• If the IDTOKEN subject is “native” to HTCondor, which instance?

• After all, my identifier (“bbockelm”) for CHTC is different than for the
OSPool (“brian.bockelman.1”)!

• We have added the concept of “Trust Domain” – the set of all
services that are run by the same administrators.
• We assume a named signing key in a trust domain always has the same

value.
• Each server belongs to a given trust domain. It’ll ignore tokens

from a different trust domain.

Trip Hazard: In 10.0.0, the default value of TRUST_DOMAIN changed! Check your
tokens are still valid if you started using tokens in 9.x.

Finding the IDTOKEN
• There’s a defined directory

that holds tokens for a client
(typically,
~/.condor/tokens.d).
The client iterates through
each token in the directory,
using the first one that
“matches”:
• “Matches” means the token

is in the same trust domain
as the server and signed with
a key the server knows.

Authentication:
SciTokens

Authentication Protocol
• A TLS connection is established between client and server.
• The client verifies the server’s host certificate.
• The client sends the SciToken across the secure channel.
• The server verifies the token was signed using the issuer’s public

key.
• Note:

• The client authenticates the server via TLS.
• The server authenticates the client using the token.

Finding the SciToken
• The client will send the token it finds in its environment using the

Bearer Token Discovery protocol.
• Short version:

• Look at the contents of the $BEARER_TOKEN environment variable.
• Look at the contents of the file referred to by $BEARER_TOKEN_FILE.
• Look at the contents of $XDG_RUNTIME/bt_u$UID
• Look at the contents of /tmp/bt_u$UID

• The first token discovered is used; no matching is performed as in
IDTOKENS.

https://github.com/WLCG-AuthZ-WG/bearer-token-discovery/blob/master/specification.md

Compare and Contrast: Token Auth’n
IDTOKENS-Specific

• Signed by the server (or
whoever holds the
symmetric key).

• Only verified by the
same symmetric key.

• Discovery in a well-
known user directory.

• Not sent to server; used
to establish a shared
secret.

Common
• Token format is JWT; can

be introspected with
any common JWT tools.

• Token contains common
JWT attributes:
expiration, validity time,
subject/identifier.

SCITOKENS-Specific
• Signed by third-party

JWT issuer.
• Verified by anyone who

can download the public
key.

• Discovered via WLCG
Bearer token discovery
protocol.

• Sent to server over TLS
(Server needs host
certificate)

Authentication:
SSL

Authentication Protocol
• Well … you know … TLS!

• It is framed using HTCSS’s CEDAR protocol, not raw TCP sockets.
Cannot debug this with “openssl s_client”.
• About every 2 years we review the TLS crypto parameters to ensure they

are modern (e.g., no MD5!).
• Client certificate / RFC 3820 proxy certificate is optional; the

server can be configured to require one, however.
• Client certificate is discovered only using the value of

AUTH_SSL_CLIENT_CERTFILE/AUTH_SSL_CLIENT_KEYFILE;
does not follow Globus conventions

Authentication Failures
• When authentication fails, the

client tool prints out every
method it tried.
• It does not print out the failure

reason for any of the
protocols.
• Sometimes this is because the

server provides no error
message about the rejection.

• Enabling security debug
logging (D_SECURITY:2) is
necessary to debug
authentication failures.

Authentication Failures

Compare output with debug disabled (left) versus enabled (right)

Identifier Mapping
TCP Connection

Parameter
Negotiation

Authentication
Method #1

Authentication
Method #N…

Identifier Mapping

Authorization!

Identity Mapping &
Authorization

HTCSS has an ‘Identifier Mapfile’
• For identity-based schemes, the mapfile is an important tool to

translate between authentication credentials and a HTCondor
identifier.
• This mapfile has 3 columns: authentication method,

authentication identifier, target HTCondor identifier.
• By default, authentication identifier is a regexp.

• Sadly, this is known as the “CERTIFICATE_MAPFILE”.

Identifier Mapfile Example

SCITOKENS "https://demo.scitokens.org" bbockelm@test.wisc.edu
SCITOKENS "https://wlcg.cloud.cnaf.infn.it/,27234843-fedf-42c8-bb81-
a1695bbd7c28" bbockelm@test.wisc.edu
SCITOKENS /^https\:\/\/osg\-htc\.org\/osdf,OSDF-(.*)@osg-htc.org$/ $1@osg-
htc.org
SSL "/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=bbockelm/CN=659869/CN=Brian
Paul Bockelman" bbockelm@test.wisc.unl.edu
INCLUDE /etc/condor/mapfile.d

Anonymous Identifiers
• If no HTCondor identifier can be established, protocols will default

to an anonymous one.
• Unfortunately, we spell ‘anonymous’ as…

• ‘unauthenticated@unmapped’ if no authentication is used.
• ‘unauthenticated@unmapped’ if SSL is used but no client certificate is

presented.
• ‘ssl@unmapped’ if SSL is used, a client certificate is presented, but no

mapping is available.
• CONDOR_ANONYMOUS_USER@CONDOR_ANONYMOUS_USER if the

ANONYMOUS method is used.
• scitokens@unmapped if SCITOKENS is successful but no mapping is

available.

Authorization
TCP Connection

Parameter
Negotiation

Authentication
Method #1

Authentication
Method #N…

Identifier Mapping

Authorization!

Authorizations
• Once a HTCondor identifier is established, we finally determine

whether the action is allowable.
• These are controlled by the ALLOW_* / DENY_* configurations.
• The ALLOW/DENY configurations are a list of identifiers of the

form “$identifier/$host_restriction”. Examples:
• *@wisc.edu/124.104.3.*
• bbockelm@unl.edu
• */*.wisc.edu

• DENY entries take precedence. If no matches for ALLOW, then
the authorization is denied.

Authorization Failures
• Finally! We have an

error message.

If in doubt – condor_ping it!

Final Thoughts / TODO list
• This was a fun overview to write!
• Please view this as a framework for understanding security

handshake failures; impossible to enumerate all the possible
reasons.
• Some observations from my side:

• Incompatibility of settings is indecipherable from a network error.
• The failure messages never say what part of the security handshake

failed.
• Authentication failure reasons are not in the failure messages, only the

failure logs.
• Some great TODOs for the dev team!

Acknowledgements
This work is supported by NSF under Grant Nos. 2030508. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

