Exorcising the IGWN pool

Draining the swamp
Astrophysics groups target different sources (see Keynote, Thurs)

Different sources & methods → zoo of different software, job, latency requirements, computational costs

Resource consumption still dominated by local submission to local HTC pools (local ~75% in last year)

Goal: move higher latency, CPU-expensive / GPU analyses to distributed HTC pool
The IGWN pool (and a representative analysis pipeline)
Much to keep track of

Overall functionality/plumbing:
- Communication across access points, collectors, entrypoints, frontend and factory
- Jobs running at all sites which support LIGO/Virgo VOs?

“List Of Doom”:
- Had a large number of “missing” sites where jobs should / had previously run
- Systematically worked through w. OSG to troubleshoot, test → mostly resolved

Job performance:
- Job success & goodput
- Data access

“List Of Woe”: documenting sites with suboptimal glidein configs (e.g., no multicore slots @ LIGO sites)

Testing / demo’ing new(ish) HTCondor/OSG functionality
Challenging to keep track

Often (historically) intermittent / stochastic science usage → lack of constant pressure

- Easy for site-level outages to go unnoticed
- Hard to distinguish large-scale problems from lack of demand

Small (but growing!) base of users in the IGWN pool

- Power users: often find workarounds (can’t be trusted to report problems)
- Novice users: easily scared → fall back to dedicated resources & local pools

Nagios-style checks:

- Great for host statuses & service status (where accessible) [WIP]
- Less appropriate / harder to design for site- & application-specific problems

Need some way to “exercise” [G.Thain: “exorcise”] infrastructure and monitor realistic user experience
Introducing: “Grid Exerciser”

Periodic submission of a DAGMan workflow to test / profile:
- Availability / functionality of CPU & GPU resources
- IGWN data discovery
- IGWN proprietary data access via CVMFS / OSDF client file transfers
- Access to CVMFS-hosted software repositories
- condor_ssh_to_job functionality

Grid exerciser job histories → aggregated into elasticsearch by condor_adstash & presented on
- Grafana dashboard, grouped by site / application
- Daily email summary

DAGMan workflow also attempts to demo/test various HTCondor functionality
- Parent DAG (now) has a mix of JOB, SERVICE, SPLICE, SUBDAG and FINAL nodes
- DAG files for SUBDAG nodes generated on the fly as a parent job of the SUBDAGs (via python bindings)
The ropes and pulleys

3-hourly DAG submission via scheduled GitLab CI pipeline
CI pipeline failures → email alerts, easy visualisation
Easy to configure run “modes” (e.g., setup only, nosubmit)

Check previous instance has exited
condor_submit_dag

scp workflow files / scripts to AP
Generate kerberos ticket on AP

Delayed CI pipeline jobs check for problems
IGWN pool dashboard: strategic overview

Strategic overview

<table>
<thead>
<tr>
<th>Site</th>
<th># jobs</th>
<th>Job success rate</th>
<th>Average RemoteWallClockTime</th>
<th>Goodput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin</td>
<td>334</td>
<td>100%</td>
<td>7 hour</td>
<td>22%</td>
</tr>
<tr>
<td>Vanderbilt</td>
<td>6243</td>
<td>100%</td>
<td>24 min</td>
<td>52%</td>
</tr>
<tr>
<td>Unknown</td>
<td>6064</td>
<td>53%</td>
<td>16 min</td>
<td>97%</td>
</tr>
<tr>
<td>USdC</td>
<td>5044</td>
<td>30%</td>
<td>2 hour</td>
<td>51%</td>
</tr>
<tr>
<td>UConn-HPC</td>
<td>593</td>
<td>100%</td>
<td>4 hour</td>
<td>55%</td>
</tr>
<tr>
<td>UChicago</td>
<td>2076</td>
<td>100%</td>
<td>12 min</td>
<td>56%</td>
</tr>
<tr>
<td>Swan</td>
<td>181</td>
<td>100%</td>
<td>22 s</td>
<td>100%</td>
</tr>
</tbody>
</table>

Number of sites running any number of All jobs (user: All, tag: All)

![Graph showing the number of sites running any number of All jobs over time.](image)
IGWN pool dashboard: where are any jobs failing?
Failures for past 24 hours: mostly grid-exerciser tests

Can drill down by fixing “ligosearchtag” and grouping by user / application...
IGWN pool dashboard: grid-exerciser view

Filter down to grid-exerciser jobs

Configure bar chart for failing executables

Grid-exerciser failures always dominated by: auth. CVMFS & ssh-to-job
(Some) current problems / gripes...

1. DAGMan started assertion errors (SERVICE nodes are broken) [understood: HTCONDOR-1909]
 a. gitlab-CI check of previous instance *always* fails
 b. No DAGMan metrics file → condor job-triggered gitlab-CI pipelines *always* fail

2. No (?) meaningful measurement of goodput for self-checkpointing applications

3. OSDF client + condor file transfer failures → held jobs, I want to identify failures (~easy to fix my tests)

4. Many teething problems with transition to SciTokens (in payloads):
 a. SciTokens & `condor_submit`: 😊
 b. SciTokens & `condor_submit_dag`: 😞
Extras
IGWN pool dashboard: where are jobs running?
IGWN pool dashboard: condor_ssh_to_job

Want to identify sites where ssh-to-job is ok

Script: waits until other target jobs in the DAG enter run state.

Once target is running, local universe SERVICE node job:

- condor_edit itself to record target site
- condor_ssh_to_job <target jobid>
- success / failure → elasticsearch & grafana

SERVICE nodes: “typically used to run tasks that need to run alongside a DAGMan workflow”

Mixed success rates: ssh-to-job had been working ~well until about a week ago…