
james.clark@ligo.org, HTC23

G2301299

Exorcising the IGWN pool
Draining the swamp

mailto:james.clark@ligo.org

IGWN: International Gravitational-Wave Network

2

Virgo

Compact
Binaries

(CBC)

Continuou
s Waves

(CW)

Bursts
Stochastic

(SGWB)

Detector Characterisation

Astrophysics groups target different sources (see Keynote, Thurs)

Different sources & methods → zoo of different software, job, latency requirements, computational costs

Resource consumption still dominated by local submission to local HTC pools (local ~75% in last year)

Goal: move higher latency, CPU-expensive / GPU analyses to distributed HTC pool

The IGWN pool (and a representative analysis pipeline)

Much to keep track of
Overall functionality/plumbing:

- Communication across access points, collectors, entrypoints, frontend and factory
- Jobs running at all sites which support LIGO/Virgo VOs?

“List Of Doom”:

- Had a large number of “missing” sites where jobs should / had previously run
- Systematically worked through w. OSG to troubleshoot, test → mostly resolved

Job performance:

- Job success & goodput
- Data access

“List Of Woe”: documenting sites with suboptimal glidein configs (e.g., no multicore slots @ LIGO sites)

Testing / demo’ing new(ish) HTCondor/OSG functionality

Challenging to keep track
Often (historically) intermittent / stochastic science usage → lack of constant pressure

- Easy for site-level outages to go unnoticed
- Hard to distinguish large-scale problems from lack of demand

Small (but growing!) base of users in the IGWN pool

- Power users: often find workarounds (can’t be trusted to report problems)
- Novice users: easily scared → fall back to dedicated resources & local pools

Nagios-style checks:

- Great for host statuses & service status (where accessible) [WIP]
- Less appropriate / harder to design for site- & application-specific problems

Need some way to “exercise” [G.Thain: “exorcise”] infrastructure and monitor realistic user experience

Introducing: “Grid Exerciser”
Periodic submission of a DAGMan workflow to test / profile:

- Availability / functionality of CPU & GPU resources
- IGWN data discovery
- IGWN proprietary data access via CVMFS / OSDF client file transfers
- Access to CVMFS-hosted software repositories
- condor_ssh_to_job functionality

Grid exerciser job histories → aggregated into elasticsearch by condor_adstash & presented on

- Grafana dashboard, grouped by site / application
- Daily email summary

DAGMan workflow also attempts to demo/test various HTCondor functionality

- Parent DAG (now) has a mix of JOB, SERVICE, SPLICE, SUBDAG and FINAL nodes
- DAG files for SUBDAG nodes generated on the fly as a parent job of the SUBDAGs (via python bindings)

The ropes and pulleys

Check previous instance has exited

scp workflow files / scripts to AP

Generate kerberos ticket on AP

condor_submit_dag

Delayed CI pipeline jobs check for problems

3-hourly DAG submission via scheduled GitLab CI pipeline

CI pipeline failures → email alerts, easy visualisation

Easy to configure run “modes” (e.g., setup only, nosubmit)

IGWN pool dashboard: strategic overview

IGWN pool dashboard: where are any jobs failing?

IGWN pool dashboard: whose jobs are failing?

Failures for past 24 hours: mostly grid-exerciser tests

Can drill down by fixing “ligosearchtag” and grouping by user / application…

IGWN pool dashboard: grid-exerciser view

Filter down to grid-exerciser jobs

Configure bar chart for failing executables

Grid-exerciser failures always dominated by: auth.
CVMFS & ssh-to-job

(Some) current problems / gripes…
1. DAGMan started assertion errors (SERVICE nodes are broken) [understood: HTCONDOR-1909]

a. gitlab-CI check of previous instance always fails

b. No DAGMan metrics file → condor job-triggered gitlab-CI pipelines always fail

2. No (?) meaningful measurement of goodput for self-checkpointing applications

3. OSDF client + condor file transfer failures → held jobs, I want to identify failures (~easy to fix my tests)

4. Many teething problems with transition to SciTokens (in payloads):

a. SciTokens & condor_submit: 😀
b. SciTokens & condor_submit_dag: 😣

https://opensciencegrid.atlassian.net/browse/HTCONDOR-1909

Extras

IGWN pool dashboard: where are jobs running?

IGWN pool dashboard: condor_ssh_to_job
Want to identify sites where ssh-to-job is ok

Script: waits until other target jobs in the
DAG enter run state.

Once target is running, local universe
SERVICE node job:

- condor_edits itself to record target
site

- condor_ssh_to_job <target
jobid>

- success / failure → elasticsearch &
grafana

SERVICE nodes: “typically used to run tasks
that need to run alongside a DAGMan
workflow”

SERVICE node means DAG completion is
independent of whether ssh-to-job ran

Mixed success rates: ssh-to-job had been working ~well until
about a week ago…

