
Service Deployment in FABRIC
at CERN

Throughput Computing 2023

7/12/23

Fengping Hu
Enrico Fermi Institute
University of Chicago

1

Overview

2

● Deploy ServiceX at CERN (to filter and reformat data on the Tier0)
● Deliver only columnar data objects to analysis facilities
● Examine resulting 1) turn around time and 2) transatlantic

bandwidth reduction

A demonstrator to inform future LHC computing models

3

A bit of background

 Main components:

● an everywhere programmable network
interconnected by dedicated optical links

● cutting-edge infrastructure for computer
science, AI, data-intensive research

● software and support

4

● FABRIC is an NSF funded network testbed operated by ESnet where one can run
experiments in areas of networking, distributed computing, storage, ML, etc.

● FAB (FABRIC Across Borders). It added five international sites to the FABRIC testbed,
including CERN.

https://whatisfabric.net/
https://whatisfabric.net/

FAB resources @ CERN

Nodes:

● 1 head
○ R7515, single AMD 7532

● 2 slow net
○ R7525, dual AMD 7532, 512 GB RAM
○ 2x 100Gbps, 4x25Gbps
○ 2x NVidia T4

● 3 fast net
○ Same as slow but with 6x 100 Gbps

and 2x SN1000 FPGA
● 1 GPU

○ Same as slow net but with 2x NVidia
RTX6000

5

Network layout

6

Provision and manage resource in FABRIC

● Create Slice in Portal (Slice Builder UI is still a work
in progress)

● Create Slice in JupyterHub
○ a private JuypyterHub environment will be built on first login
○ User’s FABRIC experiment notebooks will be persistently

stored
○ FABRIC includes a set of example notebooks that

demonstrate the use of the FABRIC Python API.

7

The ServiceX slice

● VMs are created with 3 l3network
○ NET1 - IPv4(IPv6 only kubernetes isn’t well

supported by kubespray)
○ NET2 - IPv6 peering for ServiceX data network
○ NET3 - IPv6 public for ServiceX frontend

● 10 nodes
○ Site: CERN
○ Host: No selection
○ Cores: 62
○ RAM: 128G
○ Disk: 500G
○ VM Image: default_ubuntu_20

8

Customizing the nodes(node.execute)

● Rename Network Interface so the name to network mapping is consistent
across nodes

● Configure netplan to disable RA and DHCP on IPv6 links ens8 and ens9
● Configure IPs for the NET1 and NET3. The IPs for the NET2 is not

configured on the node but managed in Kubernetes
● Configure policy based routing to avoid asymmetric routing(change

default route to use the NET3 gateway and add rules for the management
network)

● Config node to use NAT64 - Access non-IPv6 services (i.e. GitHub) from
IPv6 FABRIC nodes

9

Kubernetes installation with Kubespray

10

Kubespray is a composition
of Ansible playbooks,
inventory, provisioning tools,
and domain knowledge for
generic OS/Kubernetes
clusters configuration
management tasks

all:
 children:
 kube_control_plane:
 hosts:
 node1:
 k8s-cluster:
 children:
 kube_control_plane:
 kube_node:
 vars:
 dns_min_replicas: 1
 supplementary_addresses_in_ssl_keys: ['2602:fcfb:1d:2::2']
 ansible_ssh_common_args: '-F ssh_config -J uid@bastionhost -i slice_key'
 hosts:
 node1:
 access_ip: 10.143.1.2
 ansible_host: 2001:400:a100:3090:f816:3eff:fe1c:385f
 ip: 10.143.1.2
 ip6: 2602:fcfb:1d:2::2

● Inventory file generated with jinja templating
from the slice creation notebook

● One command to install Kubernetes
ansible-playbook -i
inventory/fabric/hosts.yaml --become
--become-user=root -u ubuntu
cluster.yml

● Enable natoutgoing for the IPv6 Kubernetes
cluster network
Kubectl edit ippool default-pool-ipv6
(natOutgoing: true)

Kubernetes installation with kubespray ||
● Configure IP autodetection for Calico

nodes to ensure the correct IP address is
used for routing

● Configure arp_ignore and
arp_announce to avoid answering ARP
queries from kube-ipvs0 interface for
MetalLB to work.

kube_proxy_strict_arp: true

● Addons
○ Metallb, ingress controller,

certmanager …

11

diff -r fabric/group_vars/k8s_cluster/k8s-cluster.yml
sample/group_vars/k8s_cluster/k8s-cluster.yml
< kube_network_plugin_multus: true

> kube_network_plugin_multus: false
< enable_dual_stack_networks: true

> enable_dual_stack_networks: false
< kube_proxy_strict_arp: true

> kube_proxy_strict_arp: false
< enable_nodelocaldns: false

> enable_nodelocaldns: true
diff -r fabric/group_vars/k8s_cluster/k8s-net-calico.yml
sample/group_vars/k8s_cluster/k8s-net-calico.yml
< calico_ip6_auto_method: "kubernetes-internal-ip"

Apps and infrastructure deployment with Flux

Flux is a set of continuous and progressive delivery
solutions for Kubernetes that are open and extensible

● GitOps for apps and infrastructure
● Declarative & Automated
● Auditable

12

Repository structures

● Platform admin repo – Shared by a fleet of

clusters
○ clusters dir contains the Flux

configuration per cluster
○ infrastructure dir contains common infra

tools such as admission controllers,
CRDs and cluster-wide policies

○ tenants dir contains namespaces,
service accounts, role bindings and Flux
custom resources for registering tenant
repositories

├── clusters
│ ├── tempest
│ ├── fabric
│ └── af
├── infrastructure
│ ├── base
│ ├── tempest
│ ├── fabric
│ └── af
└── tenants
 ├── tempest
 ├── fabric
 └── af

13

├── certmanager
├── metallb
├── prometheus
├── sealed-secrets
├── ⋮
└── whereabouts

● Power of overlay
● Explicitly specify order

with kustomization
dependencies

Frontend network and data network for ServiceX

14

ens9

eth0net1

ens3

hostpod

ens8

● Multihomed host
○ Management network(ens3)
○ IPv6 public network(ens9)

● Multihomed pod
○ Directly attached peering

network(net1, ens8)
○ Kubernetes cluster

network/master plugin(eth0)eth0net1

pod

LHCONE

IPv6
public

netns1

netns2

ens7

NAT

MULTUS
MACVLAN

Anatomy of the networks

Attach data network to pod with Multus and Whereabout

● Multus CNI is a container
network interface (CNI)
plugin for Kubernetes that
enables attaching multiple
network interfaces to
pods.

● Whereabouts- An IP
Address Management
(IPAM) CNI plugin that
assigns IP addresses
cluster-wide.

15

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: '{
 "cniVersion": "0.4.0",
 "type": "macvlan",
 "master": "ens8",
 "mode": "bridge",
 "ipam": {
 "type": "whereabouts",
 "range": "2602:FCFB:0100:0:10::-2602:FCFB:0100:0:20::/64",
 "gateway": "2602:FCFB:0100::1",
 "routes": [
 {"dst": "2605:9a00:10:200a::/64",
 "gw": "2602:FCFB:0100::1"},
 {"dst": "2001:1458:d00::/48",
 "gw": "2602:FCFB:0100::1"},
 {"dst": "2001:1458:301::/48",
 "gw": "2602:FCFB:0100::1"},
 {"dst": "2001:1458:303::/48",
 "gw": "2602:FCFB:0100::1"}
]
 }
 }'

MACVLAN for container and caveats
● With MACVLAN, you can create multiple

interfaces with different Layer 2 (that is, Ethernet
MAC) addresses on top of a single one

● Containers comes and goes quickly which would
result in rapid change of the MAC address
associated with the same IP address. We
observed a problem with routers due to this.

● The symptom is that we can’t ping the container
IP from outside in the first few minutes, but
reaching out from the container is fine. Not really
a problem for us because we initiates connection
from container.

16

Access frontend from IPv4 network

● Limited IPv6
availability cause
inconvenience for
frontend access

● We bridge the gap
with our on-prem
dual stack cluster

17

ServiceX
Slice
FABRIC

IPv4 only
network

Dual stack Analysis
Facility Kubernetes
cluster

IPv6 only
network

ExternalName
SVC

nginx.ingress.ku
bernetes.io/upstr
eam-vhost

1. Run the Jupyter notebook to create a FABRIC slice.

2. Run the Jupyter notebook to install Kubernetes

3. Bootstrap Flux on the cluster connected to the GitHub
repository

4. Restore the SealedSecrets from the S3 backup

5. Watch everything get recreated and access the ServiceX web
frontend to verify

Steps to redeploy everything

18

Ready to Deploy ServiceX

19

Server Side Data Delivery using FAB at CERN

(results run yesterday)

https://agenda.hep.wisc.edu/event/2014/contributions/28509/

Conclusion

● We used the FAB extension of the testbed to CERN
● The FABRIC interface allowed us to provision and

manage a data delivery service where we normally
cannot
○ Here, we put the service close to the storage origin

to test a new LHC analysis facility configuration
● We plan to scale this up and extend IRIS-HEP analysis

grand challenges this Fall
20

21

Thank you!

This work supported in part by NSF awards:
● #1935966 Mid-Scale RI-1 (M1:IP): FABRIC: Adaptive Programmable Research

Infrastructure for Computer Science and Science Applications
● #2029261 Collaborative Research: IRNC: Testbed: FAB: FABRIC Across Borders
● #1836650 S2I2: Institute for Research and Innovation in Software for High Energy

Physics (IRIS-HEP)

