
Federated
Varnish & XCache
Deployment with SLATE

Throughput Computing 2023
Madison, July 12, 2023

Ilija Vukotic, University of Chicago

Service Deployment Models

There are services that we would like running at most of the ATLAS sites (eg. Perfsonar)

Standard way of doing it is to ask sys admins to run it:

Adding a service incurs a significant cost in sys-admin time:

● Learning about service
● Configuring
● Monitoring
● Keeping it up-to-date

People using a service need to communicate with sites, explain changes needed, debug
things that break due to skipped updates, etc. sometime take months.

This makes for a unreliable service, security issues, slow rollout of new features, stifles
innovation.

2

Service Deployment Models - cont’d

Federated way of doing it:
● Have one or (better) two people that know the service

inside-out.
● Give them a secure way to deploy, (re)configure,

monitor, start/stop/update it, with minimal/no
involvement of site’s personal.

● Site personal has only one-off things to do - NoOps.
● SLATE is one way to do Federated Ops.

3

SLATE: Services Layer At The Edge

4

● SLATE - a value added K8s distribution
○ Support for CVMFS, ingress controller

(multi-tenant, scoped privileges),
Prometheus monitoring, curated
application catalog w/ Github Actions

● Site security & policy conscious
○ SLATE works as an unprivileged user
○ Single entrypoint via institutional identity
○ Site owner controls group whitelists &

service apps; retains full control

● With OSG, WLCG, trustedci.org & others
worked to establish a "CISO compliant"
security posture and new trust delegation
model

Trusted
image

registries

https://slateci.io
https://trustedci.org/

SLATE - Adding a service

5

Assuming an old-fashioned app…

● Create docker image(s)
○ Directly from github using github actions, push them to a registry (DockerHub, OSG

Harbor, CERN Harbor,...)
○ Check image scan reports.

● Create kubernetes deployments, services, ingress, etc. Test all works
correctly (Docker Desktop).

● Create Helm chart
○ Basically decide what are the parameters that need to be configurable. Write

instructions.
○ Add a few SLATE required lines.

● Add the chart to SLATE integration repository. Test.
● Add it to production repository.

SLATE - Managing a service

6

$ slate instance list

$ slate instance delete <instance name>

$ slate app install --group atlas-xcache --cluster uchicago-prod

--conf MWT2.yaml xcache

Web interface

CLI

Kibana monitoring

XCache

ATLAS has two situations where data is remotely accessed:
● Virtual Placement - jobs scheduled to sites that have no

input data
● ServiceX - a service that quickly filters, enriches, delivers

data in multiple formats for semi-interactive analysis.
Both practically require caching input data for faster subsequent
accesses.
● The data is primarily accessed via xroot protocol.
● XCache is a specifically configured XRoot server that caches

blocks accessed (also used by OSDF, CMS, etc.).
7

https://docs.google.com/presentation/d/15a-x28IVem1O8INq0opGB9JkxtZMm2scCLYH3K9BCgc/edit?usp=sharing
https://servicex.af.uchicago.edu/

XCache in SLATE

A rather complex application with multiple containers:
● Server itself
● Proxy renewal
● Rucio heartbeats
● Monitoring stream udp2tcp proxy

Special requirements:
● NodePort service (for performance reasons)
● Dedicated node:

○ Special label xcache-capable: "true"
○ Tainted effect: PreferNoSchedule.
○ A lot of disks as JBODs
○ At least one NVMe for namespace
○ Good NIC (> 25Gbps)

8

Deploying XCache
Once a site approved application, informed me of disk mounts, IP and labeled
node we:
● Prepare configuration. Most of it are defaults.
● Create slate secret (xcache service certificate)

● Deploy XCache

● Check it works

9

$ slate app install --group atlas-xcache --cluster esnet-lbl --conf ESnet.yaml xcache

$ slate secret create --group atlas-xcache --cluster esnet-lbl
--from-file userkey=xcache.key.pem --from-file usercert=xcache.crt.pem xcache-cert-secret

$ xrdcp -f
root://198.129.248.94:1094//root://fax.mwt2.org:1094//pnfs/uchicago.edu/atlasdatadisk/rucio/
data15_13TeV/3b/5d/AOD.11227489._001118.pool.root.1 /dev/null

XCache in SLATE

● We need it at all US Tier2s, Tier1, Analysis Facility,
several UK and DE sites.

● Update of all SLATE instances takes <10 min,
non-SLATE deployments take days to update.

10

< 5 min 5-10 min

XCache Container Download
Kubernetes objects
instantiated

SLATE creates secrets and XCache
deployment on cluster

Pod starts up, registers
itself in Rucio

5-10 min < 5 min

A data caching
network deployed in
less than 20 minutes.

Upgrades are as simple as re-deploying.

Several sources:

● SLATE
● gStream
● Panda
● Pilot
● Functional tests

11

XCache monitoring

Squid

● We use Squids for http caching. Squid is a forward proxy.
● Single threaded, quite old technology.
● We use them for two different

purposes:
○ to cache Frontier requests
○ to cache CVMFS accesses.

● Most sites have the same cache do both.
● Sites are recommended to have two Squids in

a round robin configuration.
● Usually configured with 32GB RAM and a persistent disk cache.

12

client site

remote

Stratum 1

Frontier

Stratum 1

Varnish

● “Made for modern hardware. Working with
kernel not against it.”

● While it is a reverse proxy, in our case it
doesn’t matter as our origins are known.

● Very flexible - Varnish Cache Configuration
Language (VCL) allows developers to specify
request handling rules and set specific
caching policies giving them a lot of control
over what and how they cache.

● Nice modern monitoring.
● RAM only version is free, Disk persistence and

federated versions are paid for.

13

client site

remote

Frontier

Stratum 1

Frontier

Stratum 1

Serving Frontier
requests
● Varnish can be added to CRIC as a Squid and

simply swapped in place.
● A VCL configuration.

○ ACL of WNs
○ List of backends

● Adding support for SNMP monitoring was 20x
more effort.

14

Serving CVMFS
requests
● This is configured on WNs. In our case

simple Puppet configuration change.
● A VCL configuration.

○ ACL of WNs
○ List of backends
○ Some complications:

■ correctly handling the fact that not all
stratum 1 serve all repos.

■ Correct handling of requests for
repos that don’t exist anymore.

 vcl 4.1;
 import dynamic;
 import directors;
 {{- range $nindex, $be := .Values.backends }}
 backend {{ $be.name }} {
 .host = "{{ $be.host }}";
 .port = "{{ $be.port }}";
 }
 {{- end }}
 acl local {
 {{.Values.acl | nindent 4 }}
 }
 sub vcl_recv {
 if (!(client.ip ~ local)) { return (synth(405));}
 if (req.method != "GET" && req.method != "HEAD") {
 return (pipe);
 }
 {{- range $nindex, $be := .Values.backends }}
 if (req.restarts == {{ $nindex }}) {
 set req.backend_hint = {{ $be.name }};
 }
 {{- end }}
 }
 sub vcl_backend_fetch { unset bereq.http.host; }
 sub vcl_backend_response {
 if (beresp.status == 404) {
 {{ $lb := last .Values.backends }}
 if (bereq.backend != {{ get $lb "name" }}){
 set beresp.uncacheable = true;
 return (deliver);
 } else {
 set beresp.ttl = 180s;
 }
 }
 }
 sub vcl_deliver {
 if (resp.status == 404) {
 if (obj.uncacheable){ return(restart);}
 }
 } 15

Varnish deployment

● Created two SLATE applications (https://portal.slateci.io/applications):
○ v4a - Varnish configured to serve Frontier requests
○ v4cvmfs - Varnish configured to serve CVFMS accesses

● Unlike XCache, straightforward Helm charts. Basically only one
configmap, one deployment and one ingress.

● Both v4a and v4cvmfs currently in production at two US ATLAS Tier-2
centers: MWT2 (UC, IU, UIUC) and AGLT2

● For more than one year we saw no issues of any kind.
● Added to OSG Topology, configured in CRIC (v4a), configured on worker

nodes (v4cvmfs).

 16

https://portal.slateci.io/applications

Performance Varnish - SNMP

● Both Varnish and Squid are monitored in both Elasticsearch and ATLAS MRTG
monitoring (cern.ch).

● Reports request/fetch, I/O data rate, CPU usage, objects & file descriptors.
● Response times can’t be compared as Squid rounds them to 0 seconds.

Varnish for Frontier node.
File descriptors is 0 since it doesn’t
use disk storage.

request/fetch Data in/out

Objects CPU
File descriptors

17

http://wlcg-squid-monitor.cern.ch/snmpstats/mrtgatlas2/indexatlas2.html
http://wlcg-squid-monitor.cern.ch/snmpstats/mrtgatlas2/indexatlas2.html

Performance Squid - SNMP

One of the Squid nodes.
Serving both Frontier and Squid.

request/fetch Data in/out

Objects CPU
File descriptors

18

Performance in Elasticsearch

Squid Varnish

19

Testing it - CVMFS

Used Siege to replay 100k requests with concurrency of 30.

Transactions: 101391 hits
Availability: 100.00 %
Elapsed time: 235.63 secs
Data transferred: 7059.98 MB
Response time: 0.05 secs
Transaction rate: 430.30 trans/sec
Throughput: 29.96 MB/sec
Concurrency: 22.02
Successful transactions: 93525
Failed transactions: 0
Longest transaction: 3.37
Shortest transaction: 0.03

Transactions: 101391 hits
Availability: 100.00 %
Elapsed time: 42.66 secs
Data transferred: 6894.09 MB
Response time: 0.01 secs
Transaction rate: 2376.72 trans/sec
Throughput: 161.61 MB/sec
Concurrency: 16.04
Successful transactions: 96796
Failed transactions: 0
Longest transaction: 4.01
Shortest transaction: 0.00

Varnish was under
regular production load.

Squid was completely
empty. x6 faster!

20

https://github.com/JoeDog/siege

Conclusions

● Thanks to SLATE it is easy to test/deploy new caching servers in
production and at scale.
○ Simple to prepare an application, very simple app deployment/management,

monitoring

● XCache is more stable, performant and up-to-date when deployed in
Federated way.

● Varnish is definitely faster than Squid, needs less resources, it is easier to
monitor. Now in production at two US ATLAS Tier2s: MWT2 & AGLT2

● Will be adding more applications to test physics data HTTP proxy caching:
Nginx, Apache Traffic Server (ATS), Nuster

21

https://docs.trafficserver.apache.org/en/latest/index.html

Extras

22

Squid vs Varnish | What are the differences?
(stackshare.io)

Squid: A caching proxy for the Web supporting
HTTP, HTTPS, FTP, and more. Squid reduces
bandwidth and improves response times by
caching and reusing frequently-requested web
pages. Squid has extensive access controls and
makes a great server accelerator. It runs on most
available operating systems, including Windows
and is licensed under the GNU GPL;

Varnish: High-performance HTTP accelerator.
Varnish Cache is a web application accelerator
also known as a caching HTTP reverse proxy.
You install it in front of any server that speaks
HTTP and configure it to cache the contents.
Varnish Cache is really, really fast. It typically
speeds up delivery with a factor of 300 - 1000x,
depending on your architecture.

23

https://stackshare.io/stackups/squid-vs-varnish
https://stackshare.io/stackups/squid-vs-varnish

Testing it - Frontier

Harder to test (but will be done).

Transactions: 177602 hits
Availability: 99.96 %
Elapsed time: 37.07 secs
Data transferred: 1232.79 MB
Response time: 0.00 secs
Transaction rate: 4790.99 trans/sec
Throughput: 33.26 MB/sec
Concurrency: 16.55
Successful transactions: 177602
Failed transactions: 68
Longest transaction: 4.97
Shortest transaction: 0.00

Transactions: 177595 hits
Availability: 99.96 %
Elapsed time: 1612.89 secs
Data transferred: 1232.78 MB
Response time: 0.26 secs
Transaction rate: 110.11 trans/sec
Throughput: 0.76 MB/sec
Concurrency: 28.34
Successful transactions: 177595
Failed transactions: 75
Longest transaction: 24.38
Shortest transaction: 0.21

Varnish was under
regular production load.

Squid was completely
empty. Huge

difference!

24

