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AR BETWEEN GENERATOR-LEVEL LEPTONS
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FIG. 1: AR between the leading and 2nd generator-level leptons.
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FIG. 2: AR between the 2nd and 3rd generator-level leptons.
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FIG. 3: AR between the leading and 3rd generator-level leptons.
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FIG. 4: AR between the two leptons that directly decay from the Higgs. Notice that the distribution indicates these two
leptons generally tend to be closer together.
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FIG. 5: AR between the two leptons that directly decay from the Higgs. These are specifically the 208 instances that are
within AR < 0.4.
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FIG. 6: AR between the two leptons that directly decay from the Higgs. These are specifically the events where the two Higgs
leptons are electrons.

HIGGSLEPTONS AND BREM-W LEPTONS

Now lets distinguish between the leptons that decay directly from the Higgs boson and the lepton that decays from
the W boson that radiated the Higgs.
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FIG. 7: AR between the two leptons that directly decay from the Higgs. These are specifically the events where the two Higgs
leptons are muons.
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FIG. 8: AR between the two leptons that directly decay from the Higgs. These are specifically the events where the two Higgs
leptons are one electron and one muon.

\ bremWhiggsLeptDeltaR | htemp
Entries 1902

50— Mean 2.505
E RMS 1.154
C Underflow 0

405 Overflow 0
C Integral 1902

30—

20—

10

(o) 8 I I YV YU MU [ i) I e
(0] 1 6

3
Delta R (ave. b/w higgs Lepts and bremW Lept)

FIG. 9: AR between the average angular position of the two Higgs leptons and the lepton from the Brem W.
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FIG. 10: AR between the average angular position of the two Higgs leptons and the lepton from the Brem W for the 208 events
where the two Higgs leptons are close (AR < 0.4).



[r— 11 secondLeptHasBuddy = 1 | thiaLeptHasBuddy — 1) £& leadLeptFromHigos 0} htemp
Entries 125
70 o Mean 82.82
E RMS 423
6— Underflow 0
F Overflow 0
5 Integral 125
afE
3=
2=
1=
O:HHH\HH\ ﬂHHxH
0 50 100 150 20 250
Lead Lept Pt (close, BremW)
FIG. 11:
stk (e atassusoy = 1| secodptiasousey == | ek sty =1 & e epromvings =11 | htemp
Entries 142
7B - Mean 57.28
E RMS 25.47
61— Underflow 0
C Overflow 0
5 Integral 142
af
3
2=
1=
O:WH‘H\H‘\H\HH‘HHHH‘HH‘HH
20 40 60 80 100 120 140
Lead Lept Pt (close, higgs)
FIG. 12:
eons ek oy e sy L e =184 s o =01 | htemp
Entries 52
4 Mean 41.92
C RMS 24.62
3.5 Underflow 0
E Overflow 0
3= Integral 52
2B|=
2
15
1=
0.5
fo 1111 A | B 1 T O T | P | AT 1
20 40 60 80 100 120

Lead Lept Pt (close, BremW)

FIG. 13:

Pr AND n DISTRIBUTIONS FOR EVENTS WITH CLOSE LEPTONS



1 - 1) htemp
Entries 215
12 Mean 47.73
C RMS 25.25
r Underflow (o]
O= Overflow 0
C Integral 215
81—
6—
4;
A PTMHHHWH_‘HM
0 20 40 60 80 100 120 140 160
2nd Lept Pt (close, higgs)
FIG. 14:
Pt (s = 1 oL sy == 1 vl epasussy == s v epsromviaas =01 | htemp
Entries 90
Mean 24.19
RMS 16.67
Underflow 0
Overflow 0
Integral 90
[ HMHH\HH\HHHHHW\HHWH
20 30 40 50 60 70 80 90
3rd Lept Pt (close, BremW)
L eptP (sadeptiasBuddy == 1 | sscondLeptHasBuddy == 1 | L epiHasBuddy == 1) &8 thiraLeptFromiigos 1) htemp
Entries 177
Mean 30.66
RMS 22.32
Underflow (o]
Overflow (o]
Integral 177
[
60 80 100
3rd Lept Pt (close, higgs)
FIG. 16:
TR D | htemp
Entries 64
3 - Mean -0.001182
E RMS 06763
C Underflow 0
25—
|- Overflow 0
C Integral 64
IR Y SRS T S ) 1R A S ) Y A D O 1
E E E E 1 15

Lead Lept Eta (elecs, close, BremW)

FIG. 17:




htemp
Entries 71
4} o Mean 0.01417
= RMS 0.7634
3.5 Underflow 0
E Overflow 0
3 integral 71
25
2f-
150
i
0.5F
ob b il iy 1 O R P 1 RPN T | 111 S O T
-2.5 e =il = ! I5) 1 il
Lead Lept Eta (elecs, close, higgs)
FIG. 18:
YR T P i | htemp
Entries 61
3 Mean 0.1549
£ RMS 0.7283
£ Underflow 0
25— Overflow 0
F Integral 61
A=
151
11—
05
o) NP 1 1 S P AR TR P N SN 1 R Y
-2 -15 -1 -0.5 y d
Lead Lept Eta (muons, close, BremW)
FIG. 19:
htemp
Entries 71
4 - - Mean -0.01751
E RMS 0.7053
3.5 Underflow 0
£ Overflow 0
3 n Integral 71
25
2=
150
1=
0.5F
o) =T I I O N L 11 S 1T
=il -1 -0.5 0 0.5 1 15

Lead Lept Eta (muons, close, higgs)

FIG. 20:
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FIG. 23:

LEADING THREE JETS IN EVENTS W/ GEN. CUTS ONLY
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FIG. 27:
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FIG. 35:

MATCHING

LEADING THREE JETS IN EVENTS W/ THREE LEPTONS PASSING QUALITY CUTS AND
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FIG. 47:

PROPERTIES OF JETS MATCHING SMALL-ANGLE HIGGS LEPTONS
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FIG. 51:

PROPERTIES OF JETS MATCHING SMALL-ANGLE HIGGS LEPTONS IN THE ZERO-JET BIN

I define Zero-Jet bin here as the number of jets for the event excluding those jets containing any of the three
generator-level W leptons within AR < 0.4 and any jet with Er < 10.0 GeV. The jet whose properties are shown
here is the one containing two higgs leptons.
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