

The US effort towards a Muon Collider

Diktys Stratakis (Fermilab) Princeton Muon Collider Workshop February 22, 2024

Compactness

 A Muon Collider is a precision probe of fundamental interactions, in a smaller footprint as compared to electron or proton colliders
Fermilab

Efficiency

More details: Snowmass'21 ITF report

WFA Colliders Electric power: ~450-1000 MW

Cost: ~18-80 B\$

Muon Colliders

Electric power: ~320 MW Cost: 12-18 B\$

🛟 Fermilab

• In a **Muon Collider**, luminosity improves substantially with energy

History

- **1960s:** First mention of Muon Colliders in the literature
- **1990s:** Design studies through US institutional collaborations
- 2011: Muon Accelerator Program was approved by DOE
 - Focused on a proton-driver solution; 1.5, 3 and 6 TeV colliders; ended in 2016
- 2021: Muon Colliders become part of the EU Accel. R&D Roadmap
 - International Muon Collider Collaboration (IMCC) formed, CERN host for now
- 2022: US Snowmass study reveal strong interest on Muon Colliders
 - Presented the Muon Collider Forum Report: a vision from the US side
- 2023: Formation of the US Muon Collider R&D coordination group
 - Provided to the P5 panel a plan for Muon Collider R&D from the US side
- 2023: P5 report released; strong support on Muon Collider activities

US effort (pre-Snowmass): MuC Forum

- The forum established a strong collaboration between the AF+EF+TF frontiers for Muon Collider (MuC) research
 - Goal was to make a **strong** physics case for MuC and inform the community
 - Monthly meetings and dedicated workshops for 18+ months before Snowmass
 - Lined-up a plan for Muon Collider R&D in the US
 - Identified synergies with other programs
 - Published all findings as a "<u>MuC Forum report</u>" and presented it in the Snowmass meeting: ~180 authors, 50+% are early career scientists
- Forum conclusions:
 - 10 TeV is the most attractive option
 - No fundamental showstoppers identified
 - BUT engineering challenges exist
 - The R&D should start now!

Cross-Frontier Report Submitted to the US Community Study on the Future of Particle Physics (Snowmass 2021)

Muon Collider Forum Report

US effort (post-Snowmass) : MuC coordination group

- R&D coordination group was formed to provide input to P5
 - Focus on 10 TeV accelerator & detector design
 - Develop R&D plan, cost, deliverables and timeline

A 10-page **R&D summary** document submitted to P5 (link)

🚰 Fermilab

International effort

- IMCC formation in 2022; CERN is host for now
- 50+ partner institutions, 30+ signed formal agreement
- Several US institutions started to join
- IMCC has ~1/2 of the FTEs to deliver the technical limited timeline

🚰 Fermilab

Target parameters (from IMCC)

Start? GOAL

🛟 Fermilab

Note: currently focus on 10 TeV, also explore 3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

Feasiblity addressed, will evaluate luminosity performance, cost and power consumption

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
N	1012	2.2	1.8	1.8
f,	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ει	MeV m	7.5	7.5	7.5
σ _E / E	%	0.1	0.1	0.1
σ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

Goal is a 10 TeV collider, potential initial stage at 3 TeV

Machine overview

9 02/22/24 Princeton Muon Collider Workshop

Luminosity for a MuC

- Luminosity is a measure of the collider efficiency
- $L = \frac{N_+ N_- n_C f}{4\pi \sigma_x \sigma_y}$

😍 Fermilab

- High charge per muon bunch of each sign
 - Requires a **powerful** proton driver, **high-yield** target & **fast** acceleration
- Small transverse beam size
 - Requires **low** transverse emittance beams & **strong** focusing magnets in the IR
- Many collisions in the collider ring
 - Requires **strong** dipole magnets to minimize the collider ring radius

A MuC is an interplay between **MAGNET**, **RF CAVITY** and **TARGET** technologies which have to be pushed to their limits for peak efficiency

Talks at this workshop: MAGNETS (K. Amm), RF CAVITY (T. Luo & S. Belomestnykh), TARGET (K. Yonehara)

MuC proton driver: What is needed?

MuC target: What is needed?

MuC p driver + target: Moving forward

- In the <u>long</u> term, Fermilab's ACE program could become the basis for developing a proton driver and a target station for a MuC
 - See talk by S. Valishev
- In the <u>short</u> term, several concepts can be studied by doing scaled experiments at **existing facilities**
 - See proton driver talk by A. Hoover
 - See target talk by K. Yonehara

Accel. Complex in PIP-II era at FNAL

50

40

30

MuC cooling: What is needed?

Princeton Muon Collider Workshop 14 02/22/24

🚰 Fermilab

■ Nb₃Sn (4.2 K)

Λ

- 16

12

MuC cooling: Path forward (design)

- Deliver a end-to-end design that meets MuC luminosity criteria
- Take into account engineering aspects
- Improve performance with AI/ML methods and latest technology
 - FNAL-UChicago (K. Di Petrillo & YK Kim) collaboration has started

MuC cooling: Path forward (demonstrator)

- Benchmark a realistic cooling lattice to give us the input, knowledge, and experience to design a real, buildable cooling channel for a MuC
- In the next years we need: (1) conceptual design of a demonstrator facility that allows testing cooling technology (2) Site exploration & cost estimate of a demo facility
 - More details see J.S. Berg talk

MuC acceleration: What is needed

🚰 Fermilab

17 02/22/24 Princeton Muon Collider Workshop

MuC acceleration: Path forward

- Develop accelerator lattice designs towards a 10 TeV collider
 - Design is site specific! Considering a US MuC, needs dedicated US resources.
- Design and test MuC style SRF cavities (325, 650, 1300 MHz)
 - Fermilab, JLAB, MSU and other US institutions have significant experience
 - Synergy opportunities with other programs (ILC, FCC-ee)
- Proof-of-principle tests for power management of cycling magnets

🚰 Fermilab

MuC collider ring – What is needed

🚰 Fermilab

MuC collider ring – Path forward

- Complete lattice design in place for a 3 TeV collider
 - Magnet specs are within HL-LHC range
- Parameters for a 10 TeV colliders are more demanding. Preliminary designs are in place [ref]
 - Higher dipoles fields (12-16 T)
 - IR quads in the 15-20 T range
 - Have to push the magnet technology beyond existing limits
- Radiation studies suggest that shielding protection for both 3 TeV and 10 TeV are the same

Muon Collider at Fermilab

- 10 TeV MuC concept is in place
- Proton source
 - Post-ACE driver -> Target
- Ionization cooling channel
- Acceleration (4 stages)
 - Linac + RLA \rightarrow 173 GeV
 - RCS #1 \rightarrow 450 GeV (Tevatron size)
 - RCS $\#2 \rightarrow 1.7 \text{ TeV}$ (col. ring size)
 - RCS #3, $4 \rightarrow 5$ TeV (site fillers)
- Collider ring, 10.5 km long
 - Could be combined with RCS #2

 In the next years we like to have a baseline design including a neutrino flux mitigation system

Proposed MuC accelarator R&D (next 5-7 years)

Summary

- MC offers a unique opportunity for EF collider with high luminosity
- Physics & technology landscape has significantly changed recently
 - Explosion of physics interest in MuC as indicated by the number of publications, activities in IMCC, Muon Collider Forum, Snowmass white papers, P5 vision...
- No fundamental show-stoppers in physics and technology have been identified, however major developments in all areas are required
- P5 report opens the door for a strong R&D program in the US
- Next steps:
 - Understand funding mechanisms
 - Organization of US efforts
 - Develop and R&D plan in both accelerator and detector design
- There are numerous opportunities for everyone to get involved!

🛠 Fermilab

• Accelerator non-experts are very welcome to help us!

Backup

MuC target: Path forward

- LBNF plans to use protons which will operate at 1.2 MW to start and will be upgradable to 2.4 MW
- To deliver this power, the Fermilab Accelerator Complex Evolution (ACE) has been proposed to P5
 - Include a target R&D program for 1.2+ MW beam powers in the next decade
 - This program will extremely benefit the targetry R&D for a MuC

What has changed since over the last years?

- Lattice design
 - Developed designs for all MuC subsystems, including a promising solution for a neutrino flux mitigation system
- Targets
 - Significant developments on MW-class target concepts due to the strong demand by many experiments.
- Magnet technology
 - Development of high-field solenoids & dipoles with specs close to the MuC needs
- RF technology
 - Demonstrated high-gradient operation of NC cavities in B-fields (50 MV/m @ 3T)
 - SCRF cavity gradients for a MuC are within reach of current technology
- Ionization cooling concept demonstration
 - Physics of ionization cooling has been demonstrated and results are published

🛟 Fermilab

A possible site: Fermilab Muon Campus

- Designed to provide beam for the Muon g-2 and Mu2e experiments
 - Muon g-2 experiment ended this year \rightarrow Beamlines are available

MuC GeV acceleration – Concept & technology needs

- Technologies requirements for a Muon Collider:
 - Superconducting (SC) linacs and Recirculating linear accelerators (RLAs)
 - Low frequency SC RF cavities that need to operate at high gradients

🛟 Fermilab