

Detector status, challenges and requirements

Karri Folan DiPetrillo University of Chicago US Muon Collider Workshop 24 February 2024

Intro, Challenges, Requirements

What we want

Access to energy and precision in one machine

Multi-TeV scale BSM physics

Good mass resolution for central high p⊤ objects, retain sensitivity to unconventional signatures

Karri Folan DiPetrillo

Forward jets/leptons, flavor tagging, Z/h separation, forward muons, luminosity, etc

Beam induced background

Luminosity target & collider environment

- Depends on energy, physics goals, and cross-sections Goal: measure di-higgs cross-section (few fb) with few % uncertainty
 - Circulate two beams & re-fill when depleted
 - Set $n_b = 1$ and maximize N_μ per bunch ~ $2 \cdot 10^{12} N_{\mu}$ Minimize $\sigma_x \sigma_y$ beam size, aim for ~O(10) µm Minimize circumference, maximize f 1/30 µs
 - Re-inject every $1/\beta\gamma\tau$ 1/100 ms

Baseline Detector

Karri Folan DiPetrillo

3 TeV design adapted from CLIC to Muon Collider environment

Major outcome from Snowmass & IMCC

Unique: <u>Tungsten Nozzles</u>

Nozzle impact on background

Open question: optimal nozzle shape/material to reduce BIB & maximize signal acceptance

Suppress high

energy component

Tradeoff: increase in

low energy neutrons

EPS 2023 Proceedings

Overall environment

Compared to HL-LHC

Up to ~10 x hit density

~1/1000 event rate

Similar dose & fluence

100 TeV pp ~3 orders of magnitude worse ~10¹⁸ MeV-neq /cm²

Muon Collider HL-LHC

Karri Folan DiPetrillo

For one year of operation

Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)		
R=22 mm	R=1500 mm	m R=22~mm	R=1500 mm	
10	0.1	10^{15}	10^{14}	
100	0.1	10^{15}	10^{13}	

Background properties

With standard nozzle ~10⁸ low momentum particles per event But this background looks very different from signal!

Details depend on beam energy, collider lattice, nozzle, and solenoid

Hit rates, pointing, and timing

10

Karri Folan DiPetrillo

Tracker Requirements

Large area & highly granular

- ~100 m² of silicon sensors
- ~ 2B channels
- Promising R&D directions
 - Monolithic sensors
 - Devices with intrinsic gain
 - Intelligent sensors

Challenges:

- Power consumption
- DAQ/trigger: O(100) TB/s
- "Streaming" readout looks feasible

High Granularity Calorimeter

Background = large, out of time low energy cloud of neutrals ~2 MeV y (96%) ~500 MeV n (4%)

Current design assumes

ECAL: Silicon+Tungsten 5x5 mm² cells HCAL: Steel+Scintillator 30x30 mm² cells Timing resolution (~100 ps) + Longitudinal segmentation

> Room for new ideas (e.g. Crilin, Calvision?)

More from Chris

Reconstruction

Works well! But is an active area of development

O(100) tracks per event after $p_{T,}$ n_{hits}, quality of fit requirements

Photon and particle flow jet performance similar to hadron collider

Extracting Physics

High quality physics demonstrated in full simulation - in good agreement with fast sim!

Karri Folan DiPetrillo

14

Status, Open Questions

Since Snowmass: 10 TeV efforts

Challenge: detector size needs to grow with energy

BIB at 10 TeV

IMCC has made massive progress on 10 TeV BIB with Fluka Occupancies similar to 3 TeV or slightly lower

Innermost pixel layers reduced by ~50%

Karri Folan DiPetrillo

Endcaps close to occupancy limits near nozzles

Ζ	0	r	a	n	

Work in progress: MDI

Initial look at varying interaction region lattice & nozzle configuration Changing nozzle seems more promising than changing lattice

Karri Folan DiPetrillo

D. Calzolari @l

С	┝	Ε	Ρ

Work in progress: forward muon tagging

Important for Higgs Width and Couplings

Initial Conclusions from theorists:

Need to tag high-energy muons up to $|\eta|=6$

Don't necessarily need to measure their momentum

Difficult question to address in simulation Configuration? Rates? Detector requirements? dσ/dη(μ)[pb]

dσ/dE_{min}(μ)[pb/TeV]

Karri Folan DiPetrillo

2401.08756

Open Question: Luminosity

Previous lepton colliders: Forward electrons from Bhabha scattering

Karri Folan DiPetrillo

Proposal to use central muons for μC Questions: Stats? Theory precision?

$\sqrt{s}=1.5$ TeV, lumi = 1e34 Remaining events

Assuming a Snowmass year = 10^7 seconds $\mathcal{L}=1.25 \cdot 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ Total events: 213 K = 0.002

,	L	U	r	r	1	i	

Work in progress: detectors requirements for R&D

Eg. For the pixel detector

	e+e-	µ+µ-	
Granularity	25 x 25 µm	25 x 25 µm	
Timing	Time of flight for PID	~30 ps/hit for BIB	
Event Rates	up to 10 µs	30 µs	
Max Hit Rates	40 hits/cm ²	~10 ³ hits/cm ²	
Cooling	air	-30C	
Radiation	_	~10 ¹⁵	

Need to think about μC detectors as complete systems <u>Urgent: define unique µC technology needs & map to US strengths</u> Subtle: feed this back into physics sensitivity

Eg. Trench/AC-LGADs:

+ meet granularity & timing needs - electronics consume 100x too much power

Eq. Data reduction on chip:

+ seems possible w/ cluster shapes

- need to incorporate µC assumptions
- need to balance bandwidth/latency constraints w/ physics needs

Missing: novel ideas

Karri Folan DiPetrillo

10 TeV μ C designs = iteration on 3 TeV μ C = iteration on CLIC = iteration on X

- No one has looked at multi-TeV muon collider and tried a fundamentally new approach - we need to enable people to do this
 - Main bottle neck full sim
 - Need to simulate BIB for any nozzle/detector changes
 - Computationally expensive We (US) don't have the capability to do this Only ~a few people in Europe do

More from Simone

Person power questions

- So far US design efforts have been a few PIs with ~10% of time + undergrads Small progress relative to IMCC, which has a few full time people
 - How can we onboard most efficiently?
- Is it realistic to have students/postdocs work on muC with a larger fraction of time?
 - How can we gain & maintain critical expertise (MDI/simulation) ASAP?

Strategy questions

- Goal should be to 1. Demonstrate feasibility to deliver physics case 2. Ensure necessary technology R&D begins now
- Suggestion: Make a list of focused questions we want to answer. Each question = 1 paper, prioritize a few at a time
- Suggestion: pair physics/design questions to hardware R&D Potentially useful in terms of student education & obtaining funding

Backup

Karri Folan DiPetrillo University of Chicago US Muon Collider Workshop 24 February 2024

Detector Oppc

March 15, 2022 https://muoncollider.web.cern.ch

Promising Technologies and R&D Directions for the Future Muon Collider Detectors

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Data Acquisition and trigger

Trigger constraints

with respect to HL LHC

~10 x hit density

 $\sim 1/1000$ event rate

O(100) Tb/s

~Similar to LHCb in Run 3 Streaming within reach Store reconstructed/filtered events

Karri Folan DiPetrillo

It's a lepton collider, goal is to save every event

On-detector constraints

rate per pixel module

rate = $N_{hits} \cdot hit$ -size $\cdot event rate \cdot safety factor$

 N_{hits} /module = 1000/mm²·20 cm² ~20k hits Hit size = 32 bits to encode x/y/amp/time

rate = $30k \cdot 32$ -bit $\cdot 30 \text{ kHz} \cdot 2$

rate = 50 Gb/s \rightarrow Per front-end ~ 20 Gb/s

~Double compared to HL-LHC Needs R&D but within reach! Benefits from on-detector data reduction

Incoherent e+e- background

e +e – pairs production via collision of two virtual photons due to beamstrahlung

Typical low energy, move along the beam, depends on solenoid B-field Studied at $\sqrt{s}=2$ TeV, need to understand at higher energies

	Larmor Radius	Detector	XS	N/bunch
< 100 MeV	< 1 mm	Invisible	10 mb	10^5
100 MeV - 1 GeV	1 mm - 1 cm	Vertex	1 mb	10k
1 GeV - 10 GeV	1 cm - 10 cm	Main detector	0.4 mb	4k

total energy flux about 10 TeV per bunch crossing.

mulation zone.

