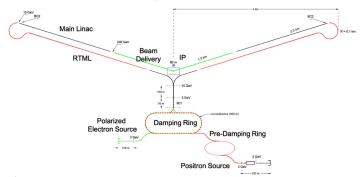
Pair Production and Hadron Photoproduction Backgrounds at the Cool Copper Collider

Elias Mettner, Abdollah Mohammadi, Bryan Nee¹ Lindsey Gray² Dimitris Ntounis, Caterina Vernieri³

> APS April Meeting 3 April 2024


1. University of Wisconsin-Madison

2. Fermi National Accelerator Laboratory

3. Stanford University and SLAC National Accelerator Laboratory

The Cool Copper Collider (C^3)

C³ - 8 km Footprint for 250/550 GeV

1 Newly proposed e⁺e⁻ Higgs factory

2 E_{CM} : 250 GeV \rightarrow 550 GeV \rightarrow TeV-Scale

Key Differences in C^3 design against other linear colliders (ILC):

- **1** Accelerating Technology: Higher gradients more compact design.
- **2** Bunch Structure: 2 orders closer $+ \sim 3$ times smaller particle density.
- **3** Train Structure: higher train rep. freq., one order fewer bunches/train.

Various backgrounds originate in the BDS or the IR of C^3

Can deteriorate detector performance:

- **1** Beam-induced Backgrounds: secondary e^+e^- pairs, $\gamma\gamma \rightarrow$ hadrons
- **2** Machine-induced Backgrounds: halo muon, neutron production
- This presentation will focus on the Beam-Induced Backgrounds

- () Beamstrahlung photons produce forward-boosted incoherent e^+e^- pairs
 - Around $10^5~{\rm pairs}~/$ bunch crossing expected with ${\rm C}^3$
 - Most are deflected, but a small fraction reach detector
- 2 Simulation of background using GUINEA-PIG
 - Interaction w/ detector simulated by Geant4 thru DD4hep SiD-like

(Plots here)

- For comparison:
 - 1 ILC TDR includes all backgrounds, C3 only incoherent pairs
 - **2** ILC bunch train is 10x longer than C3

W

• Beamstrahlung photons can also produce a hadronic background

1 rate $\sim 10^5$ smaller than the e^+e^- pair background **2** More central than incoherent pairs, may still impact reconstruction

• PYTHIA used for simulation of processes above $\sqrt{s_{\gamma\gamma}} > 2 \text{ GeV}$

1 Interfaced w/ detector through Geant4/DD4hep 2 $\sqrt{s_{\gamma\gamma}} < 2 \text{ GeV}$: Pythia unreliable, use WHIZARD/CIRCE (Slide 10)

(Plots here)

- For comparison:
 - **()** Only $\gamma\gamma \rightarrow$ hadrons occupancy (Not overlaid with incoherent pairs)
 - **2** Summed: with incoherent pair occupancy: tail seen in ILC plot appears

(More plots here)

W

- 1 $\sqrt{s_{\gamma\gamma}} < 2$ GeV: Pythia is unreliable for simulation
- **2** Alternate workflow: GUINEA-PIG \rightarrow CIRCE \rightarrow WHIZARD
- **3** Previous simulation from GUINEA-PIG utilized
- 4 CIRCE: Output successfully tailored for C3 after some consideration
 - CIRCE had a bug when processing low-event GPig data
 - This was fixed in a later release
- **5** : WHIZARD: Successful simulation with C3 but further modifications needed

- \bigcirc C³ is a compact, upgradable, and sustainable Higgs Factory proposal
- ② Contribution from e^+e^- pairs and $\gamma\gamma
 ightarrow\,$ hadron backgrounds is manageable
- **3** The ILC is a valid reference for C³ studies, with C³ \sim ILC /10.
- 4 Generation of full hadron background processes is slow but steady
- **5** Future Steps:
 - Finish hadron background generation
 - Expand data production and investigate further backgrounds
 - Utilize further ILC studies for reexamination within the context of C3

