# Pair Production and Hadron Photoproduction Backgrounds at the Cool Copper Collider

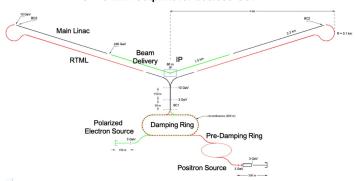
Elias Mettner, Abdollah Mohammadi, Bryan Nee<sup>1</sup> Lindsey Gray<sup>2</sup> Dimitris Ntounis, Caterina Vernieri<sup>3</sup>

> APS April Meeting 3 April 2024








NATIONAL ACCELERATOR LABORATORY

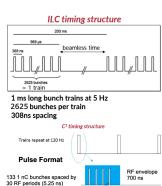
- 1. University of Wisconsin-Madison
- Fermi National Accelerator Laboratory
  Stanford University and SLAC National Accelerator Laboratory

# The Cool Copper Collider (C<sup>3</sup>)



#### C3 - 8 km Footprint for 250/550 GeV



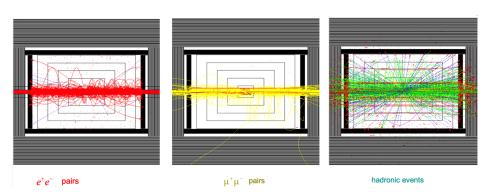

- Newly proposed e<sup>+</sup>e<sup>-</sup> Higgs factory
- **2**  $E_{CM}$ : 250 GeV  $\rightarrow$  550 GeV  $\rightarrow$  TeV-Scale



#### From ILC to C<sup>3</sup> Parameters



|                                              | $C^3$      |            | ILC   |         |
|----------------------------------------------|------------|------------|-------|---------|
| Parameter [Unit]                             | Value      | Value      | Value | Value   |
| CM Energy [GeV]                              | 250        | 550        | 250   | 500     |
| Luminosity $[\cdot 10^{34}/\mathrm{cm}^2 s]$ | 1.3        | 2.4        | 1.35  | 1.8/3.6 |
| Gradient [MeV/m]                             | 70         | 120        | 31.5  | 31.5    |
| Geometric Gradient [MeV/m]                   | 63         | 108        | 20.5  | 31      |
| Length [km]                                  | 8          | 8          | 20.5  | 31      |
| Num. Bunches per Train                       | 133        | 75         | 1312  | 2625    |
| Train Rep. Rate [Hz]                         | 120        | 120        | 5     | 5       |
| Bunch Spacing [ns]                           | 5.26       | 3.5        | 554   | 554/366 |
| Bunch Charge [nC]                            | 1          | 1          | 3.2   | 3.2     |
| Crossing Angle[rad]                          | 0.014      | 0.014      | 0.014 | 0.014   |
| Site Power[MW]                               | $\sim$ 150 | $\sim 175$ | 111   | 173/215 |




Key Differences in  $C^3$  design against other linear colliders (ILC):

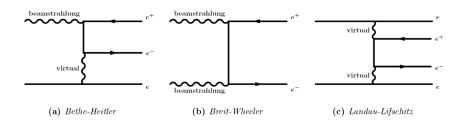
- Accelerating Technology: Higher gradients more compact design.
- **2** Bunch Structure: 2 orders closer  $+\sim 3$  times smaller particle density.
- 3 Train Structure: higher train rep. freq., one order fewer bunches/train.

#### Beam and Machine Backgrounds





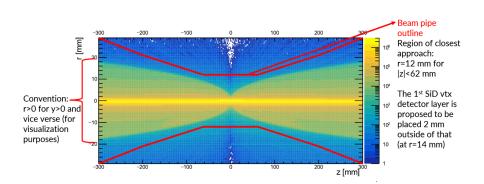
Various backgrounds originate in the BDS or the IR of  $\ensuremath{\text{C}}^3$ 


Can deteriorate detector performance:

- **1** Beam-induced Backgrounds: secondary  $e^+e^-$  pairs,  $\gamma\gamma \rightarrow$  hadrons
- 2 Machine-induced Backgrounds: halo muon, neutron production

This presentation will focus on the Beam-Induced Backgrounds

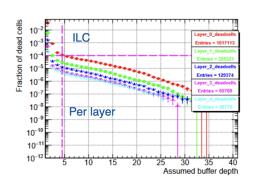
## e<sup>+</sup>e<sup>-</sup> Pair Background

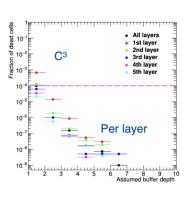





- $oldsymbol{0}$  Beamstrahlung photons produce forward-boosted incoherent  $e^+e^-$  pairs
  - Around 10<sup>5</sup> pairs / bunch crossing expected with C<sup>3</sup>
  - Most are deflected, but a small fraction reach detector
- Simulation of background using GUINEA-PIG
  - Interaction w/ detector simulated by Geant4 thru DD4hep SiD-like

#### Pair Background Simulation



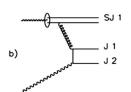



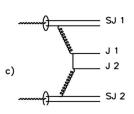

- For comparison:
  - 1 ILC TDR includes all backgrounds, C3 only incoherent pairs
  - 2 ILC bunch train is 10x longer than C3

### Pair Background Simulation





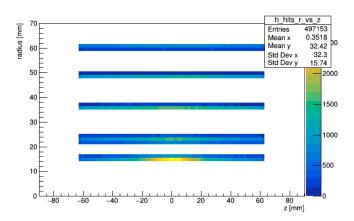





- For comparison:
  - 1 ILC TDR includes all backgrounds, C3 only incoherent pairs
  - 2 ILC bunch train is 10x longer than C3

#### Hadron Photoproduction Background



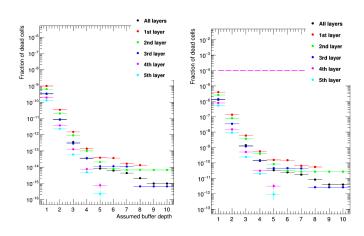







- Beamstrahlung photons can also produce a hadronic background
  - 1 rate  $\sim 10^5$  smaller than the  $e^+e^-$  pair background
  - 2 More central than incoherent pairs, may still impact reconstruction
- PYTHIA used for simulation of processes above  $\sqrt{s_{\gamma\gamma}} > 2~{\rm GeV}$ 
  - 1 Interfaced w/ detector through Geant4/DD4hep
  - 2  $\sqrt{s_{\gamma\gamma}} < 2 \; {\rm GeV}$ : use WHIZARD/CIRCE (Slide 10)

#### Hadron Photoproduction Simulation






- For comparison:
  - **1** Only  $\gamma\gamma \rightarrow$  hadrons occupancy (Not overlaid with incoherent pairs)
  - Summed with incoherent pair occupancy: tail seen in ILC plot appears

## Occupancy Results With Pythia





- For comparison:
  - **①** Only  $\gamma\gamma \to \text{hadrons}$  occupancy (Not overlaid with incoherent pairs)
  - 2 Summed with incoherent pair occupancy: tail seen in ILC plot appears

#### Further Simulation with CIRCE and WHIZARD



- $\int \sqrt{s_{\gamma\gamma}} < 2 \text{ GeV}$ : Pythia does not simulate this part of the spectrum
- 2 Alternate workflow: GUINEA-PIG → CIRCE → WHIZARD
- 3 Previous simulation from GUINEA-PIG utilized
- 4 CIRCE: Output successfully tailored for C3 after some consideration
  - CIRCE had a bug when processing low-event GPig data
  - This was fixed in a later release
- 5: WHIZARD: Successful simulation with C3 but further modifications needed

#### Key Takeaways



- ① C<sup>3</sup> is a compact, upgradable, and sustainable Higgs Factory proposal
- **2** Contribution from  $e^+e^-$  pairs and  $\gamma\gamma\to\,$  hadron backgrounds is manageable
- **3** The ILC is a valid reference for  $C^3$  studies, with  $C^3 \sim ILC /10$ .
- 4 Generation of full hadron background processes is slow but steady
- 6 Future Steps:
  - Finish hadron background generation
  - Expand data production and investigate further backgrounds
  - Utilize further ILC studies for reexamination within the context of C3

