
Introducing Pelican:
Powering the OSDF

Introducing the

The is a federated platform for
delivering datasets from repositories to

compute* in an effective, scalable manner.

2

* ‘Compute’ is viewed broadly; everything from a browser to a cluster.

The : Connecting your repository

The OSDF provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is
operated by

Using
hardware from

And integrates a wide
range of open science,

3As part of the OSG Consortium’s Fabric of Services

OSDF Integrates Independent Repositories
into a common fabric

• About a dozen
repositories
integrated already,
more on the way.
• Working to grow:
• clients,
• integrated

resources, and
• environments.

4

AWS
Open Data

DeltaAI

= existing integration

OSDF & Pelican

• The next presentation will
go into some highlights of
what the OSDF has been
delivering for science.
• We split out the technology

powering the OSDF and
christened it the “Pelican
Platform”.
• Same components as before,

just integrated into a
standalone platform.

5

Software Service

The Pelican Project

The OSDF is operated by using hardware from and others.
Who develops the software?

The Pelican project (OAC-2331480) is a newly-funded, $7M/4-year
project with the following goals:
1. Strengthen and Advance the OSDF.
2. Expand the types of computing where OSDF is impactful.
3. Expand the science user communities.
• With a particular driver of the climate community.

6

Meet the team

Meet the team

How does the OSDF work?
A brief tour through the Pelican architecture as implemented by the OSDF.

9

OSDF in Practice

• Currently, the most common use
for the OSDF is managing inputs
to OSPool (or similar pools).
• Clients include:
• HTCSS plugin, allowing “osdf://”

URLs in a HTCondor submit file.
• Standalone CLI with “cp”-like

semantics
• Python fsspec implementation,

linking Pelican to the Python ”data
science” ecosystem.

10
Let’s run through a HTCondor Example

OSDF In Practice

• If HTCondor needs an object –
say, a container – for a job, the
first step is to start the OSDF
client (a “file transfer plugin”).
• The OSDF client contacts the

manager, requesting to read
the object.

11

OSDF In Practice

• The manager determines a
nearby cache to serve the
object.
• Every location in the lower 48

states is within 500 miles from an
OSDF cache hosted by the NRP.

• If the object is in cache, it is
served to the client
immediately.
• Otherwise…

12

OSDF In Practice

• The cache contacts the origin
hosting the object.
• The object prefix is used as a

routing key to determine the
correct origin.

• The origin will read the object
from the underlying object
store.
• Typically, a POSIX filesystem – but

other backends exist!

13

Architecture: Recap

• An origin service integrates the
object store into the OSDF in the
same way a CE integrates a batch
system into the OSPool. Interfaces
to move data and map
authorizations.
• The cache service stores and

forwards objects, providing
scalability to the data access.
• The manager selects a source/sink

of an object for clients and
maintains the namespace.

14

OSDF Architecture - Vision

• Long-term vision: Pelican Platform,
provides a ‘transport bus’, connecting a
broad range of dataset providers to
consumers.
• We aim to broaden the supported clients

(Python, Browser-based) and provide
integrated services with other projects.

• Become a platform beyond the initial
context of a service supporting
distributed High Throughput Computing.

15

Includes OSN pods –
anything S3 compat.

Pelican: One Year Down the Line
What are the big project achievements after ~1 year?

Rearchitecting Core Services

• We reimplemented the central services of the federation. There’s
now two main central components:
• The Director receives the client’s HTTP requests (GET, PUT) for objects and

selects an origin/cache to service the request.
• The Registry maintains the list of approved caches, origins, and known

namespace prefixes.
• Each registry entry is associated with a public key; the public key is used to sign tokens

authorizing actions.

• Other federation-level activities exist:
• Periodically test all caches and origins for functionality.
• Connection brokering.
• Monitoring activity (embedded Prometheus).

Standalone Software

• Pre-Pelican, it was not possible to setup your own data federation.
• The venerable OSDF client, stashcp, had hardcoded hostnames and OSDF-specific logic. Deeply tied into

the OSG Topology application and WLCG GeoIP services.
• As Pelican, it’s now a proper software project:

• Software is managed on GitHub in a single organization. Monthly feature releases, ~weekly bugfix releases.
• You can setup your own, self-contained data federation!
• There are dozens of unit tests and end-to-end integration tests run with each commit (~55% test coverage).

• While “unit test coverage” isn’t a user-visible feature, it allows us to start deliver new and
evolving functionality with confidence.

Weekly commits to the main Pelican
(previously, stashcp) repository

Converting OSDF to Pelican

• We are rolling out new services and protocols via
a new software stack … onto the existing
infrastructure!
• E.g., a Pelican-based cache must be 100% compatible

with old and new origins and clients.
• No “flag day” option, cannot force client upgrades.

• Transition of services is >50% done.
• Slower than anticipated. Familiar story: periodically

pause to implement previously-unknown use cases,
cleanup old messes in topology and containers.
• Until we’ve 100% cutover, Pelican carries the burden

of supporting both old and new clients.
Microsoft Copilot’s interpretation
of “changing the engine while the
Pelican is flying”

“Batteries Included” Origin

We aim to simplify the art of
running an origin:
• New web UI for viewing,

monitoring, and configuring the
origin.
• Origin runs built-in health checks
• Can use “connection reversing”

so incoming firewall port /
hostname / host certificate not
needed.

Site

New Backends
Beyond the traditional POSIX storage, we’ve added the
following backends:
• S3: Works with any S3-compatible endpoint
• Generic HTTP: Integrate existing HTTP endpoint into the

OSDF.
• Globus: Users must authorize sharing a collection to the

origin
• XRootD: Uses XRootD proxying module.
Note each of these backends can be used remotely – origin
does not need to be present at the local site.

Origin

Pelican: Looking forward

More Backends!

We want to connect any reasonable scientific data repository to the
OSDF. This includes:
• Continuing to mature the Globus backend: more functionality, more

example integrations.
• For WLCG folks: aim is sufficient integration to use with FTS transfers.

• DataVerse: Data repository software (https://dataverse.org/) often
used by institutional libraries. Embed OSDF links directly into
DataVerse instances.
• Improve origin monitoring and throttling. E.g., NASA datasets are

available through HTTP but access must be strictly rate-limited.

https://dataverse.org/

Improved Dashboard
and Monitoring

Monitoring work is ongoing in two lines:
• Better communicating the data we have:
• Generating improved graphs of data moved, number of requests, breakdown

by project.
• Goal: Clearly show how your institution is impacting/enabling others, just like

the HTCondor-CE dashboard.
• Gathering more data:
• XRootD has deep coverage of successful transfers. Little aggregation of

filesystem errors; no monitoring of protocol-level (HTTP) events. Contributing
patches upstream to expose this data.
• What else do you want to see? Chase down a Pelican team member!

Work in-progress by summer CHTC Fellow

Deeper HTCSS
Integration

• Each team HTCondor uses Pelican to transfer a file, a summary
ClassAd is created (and can be ingested to ElasticSearch; see Jason’s
talk tomorrow).
• Working on a common schema so the AP can make more informed decisions

about retries or alternate transfer methods.
• Each month, we scan ElasticSearch to review hold messages

generated by Pelican and attempt to make them more “human
readable”
• HTCSS can start up a Pelican “local cache” daemon, setting aside EP

space to be used for common input files.
• Goal is to deploy this to the OSPool over the summer

+ =

HTCSS and Pelican are a single team!

https://agenda.hep.wisc.edu/event/2175/contributions/31336/

Collections Management

• Pelican/OSDF are inherently about immutable objects. Upload,
download, stat – works at the individual object level.
• Next year, we plan to expose a collections API, representing a group of

objects.
• Analogous to “buckets” in S3 but decoupled from the namespace.
• Collections would be mutable, and may define a set of objects that are the

result of a database query.
• Provides a way to transport metadata to higher-level cataloguing systems.
• Access to collections will be separately managed, allowing for simple

authorization management.

Conclusions

Pelican Year 1 – quite the whirlwind!

• We reengineered the origin and cache services, added new central
services, and greatly improved the OSDF’s integration with HTCSS.
• OSDF saw corresponding enormous growth, with some days moving >2PB.

• We’ve picked up new science partners (notably, NCAR) and supported
some great science (NRAO).
• Working to provide more visibility into the system: what’s my

hardware doing? who’s using my objects? who am I impacting?
• Expect us to take inspiration from OSPool!

Pelican is a happy member of the HTC community and has big plans
to move forward data management with HTC.

The : Connecting to your datasets

29

Operates (most of) the hardware

Operates the services

The OSG Consortium is the “umbrella” we work within.

To acknowledge all of the partners working together...

Provides the software
OAC-2331480

OAC-2030508

OAC-2112167

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

