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“Our ability to perceive quality in nature begins, as in art,
with the pretty. It expands through successive stages of
. the beautiful to values as yet uncaptured by language.”

“ .. . Aldo Leopold, A Sand County Almanac
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Synthetic biology



Microbial Evolution and Growth Arena (MEGA) plate

https://theory.labster.com/mega_plate/

growth
starts here

Ox 1Ix 10x 100x 1000x%

Increasing level of antibiotics

Observing rapid bacterial evolution in the lab

Baym et al. Science 2016 doi:10.1126/science.aag0822
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Baym et al. Science 2016




introduced in the gene for the in bacteria, which use

enzyme that will be changed. them as templates and
produce randomly

mutated enzymes.

1 Random mutations are 2 The genes are inserted

mutation

enzymes
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New random mutations are
introduced in the genes for the
selected enzymes, The cycle
begins again.
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Directed evolution

The changed enzymes are
tested. Those that are
most efficient at catalysing
the desired chemical
reaction are selected.

test plate

discarded
enzyme
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Frances H. Arnold
awarded 1/2 the
Nobel Prize in
Chemistry 2018

Scientific Background on the
Nobel Prize in Chemistry 2018



Emmanuelle Charpentier
and Jennifer A. Doudna
awarded the Nobel Prize
in Chemistry 2020
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Emmanuelle Charpentier and Jennifer A. Doudna. © Nobel Media. Ill. Niklas EImehed
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First CRISPR therapy FDA approved
in December 2023

Casgevy for sickle cell disease



Al-guided synthetic biology
and protein engineering



Why is protein engineering important?

Proteins can be modified to have biomedical applications

\d Proteins for
o herbicide
tolerance

Proteins as
biological
factories

Proteins as
medicines

ie.202301370

PDB 2QMT



Why is protein engineering so hard?

. 5% ' Natural proteins do not initially
il do the job we want

Need to engineer (modify) them
by changing their sequence

MQHTYPAQLMRFGTA
Amino acid sequence

Where do we modify the sequence? How many changes? Which changes?
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How does Al improve protein engineering?

Candidate sequence Al model Predicted protein function

Goal: modification 4 t\T—!]\_T!]\_T!]

LA A A
Mutational Effect
Training the Al model Transfer Learning (METL)
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~100 experimental
measurements © NS measurements

Gelman 2024 doi:10.1101/2024.03.15.585128



Supervised learning to predict protein function

Sequence-function
examples

Variant Score
D138N, K140E | -2.35
N127A -4.00
K180N, A182D | -4.14

nN=71Ar 1199 CT 1 N

10s-100s of thousands of
protein variants characterized
by deep mutational scanning

Gelman et al. PNAS 2021 doi:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms
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Supervised learning to predict protein function

Sequence-function Supervised
examples learning models
Variant Score g_ @ l-'
D138N, K140E | -2.35 FAON=0
N127A -4.00 _,ﬁ@ {.., O O
K180N, A182D | -4.14 §@ =0
ﬂﬂﬂﬂﬂﬂﬂ — s GY

10s-100s of thousands of
protein variants characterized Tested linear regression and fully
by deep mutational scanning connected, sequence convolutional, and
graph convolutional neural networks

Gelman et al. PNAS 2021 DOI:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms
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Supervised learning to predict protein function

Sequence-function Supervised Predict scores
examples learning models for new variants
Variant Score g_ @ l-' Variant Score
D138N, K140E | -2.35 = (L) =0 £ G177L, M189T | 27?77
%) O3 O

N127A -4.00 | p S (X5 D) Q O N L142K 22777

K180N, A182D | -4.14 S @ I~ 3 ,
S @ A/ g Variant Score
HOM : G177L, M189T | 0.003
° L142K -0.421

10s-100s of thousands of

protein variants characterized Tested linear regression and fully
by deep mutational scanning connected, sequence convolutional, and
graph convolutional neural networks

Gelman et al. PNAS 2021 DOI:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms
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Example: predicting GB1 IgG binding %

s -
o g
Small domain from streptococcal protein G that binds mammalian IgG * /" Y’

Train supervised learning models on 16,384 sequence-function examples

Linear regression  Fully connected Sequence convolution

Predicted score

~10 - ,
-10.0 -7.5 -5.0 -2.5 0.0 2.5 75 50 25 00 25 -8 -6 -4 -2 0 2

True score True score True score




Models struggle with less training data
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Models struggle with less training data
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Models struggle with less training data
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METL: Mutational Effect Transfer Learning

Transfer learning based on biophysical simulations

1 Simulate protein 0
variants with Rosetta — F DB
PROTEIN DATA BANK

2 Train a model to predict
the Rosetta energies

Rosetta
Commons

3 Transfer representation to
experimental data

Many slides and figures from Sam Gelman Bryce Johnson



METL step 1. Generate biophysical simulations

_ + millions of simulated variant effects
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METL step 1. Generate biophysical simulations

_ + millions of simulated variant effects
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METL step 1. Generate biophysical simulations

Global mode:
Generate
biophysical
simulations for
diverse protein
structures

Runtime =35,000
compute-days
(powered by CHTC
and OSG Consortium)
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+ millions of simulated variant effects




METL step 1. Generate biophysical simulations

Global mode:
Generate
biophysical
simulations for
diverse protein
structures

Runtime =35,000
compute-days
(powered by CHTC
and OSG Consortium)
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METL step 2. Train model to predict energies

Model learns a representation based on the Rosetta energies

Predicts outputs of

biophysical * Energy 1 B Energy N
simulations
ﬁ Transformer encoder (_Feed '}°"‘”ard J
: - : Pooling supports 5 |
Relative position encoding O01Ng SUPP [_Global Pooling
, different seq lengths A 3 A
based on protein 3D structure i
5 || 1
Local > 2M params Based on attention g|[| Feed Forward
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METL step 3. Transfer to experimental data

Pretrained local or global model

Energy 1
Transformer encoder Energy N




METL step 3. Transfer to experimental data

Pretrained local or global model

Energy 1
AA sequence Laver 1 Lover2 o Lover 3 el
Transformer encoder Energy N

Fine tuning

New :
Functional
A SEEETEE Layer 1 [_ 4 Layer2 [_J e neto

Transformer encoder

10s to 1000s of experimental sequence-function examples



Evaluating METL on diverse protein datasets

Dataset Description Assay Len Examples
;/ avGFP Green fluorescent protein Brightness 237 51,714
w} LG4 Postsynaptic den5|ty.prote|n 95 CRIPT binding 66 517,653
& (PDZ3 domain)
22
7;%/ - GB1 Protein G (B1 domain) lgG binding 56 536,084
—; Poly(A)-binding protein .
N2 1 7,71
&~ Pab (RRM2 domain) mRNA binding 75 37,710
18 Ubiquitination factor E4B Ubiquitin

' 102
§& (U-box domain) ligase activity 02 88,375



Compare to evolutionary protein language models

Predict next amino acid in protein sequence

]|

Predict hidden amino acids in protein sequence

e VA

ml

“Transformer-based deep learning for predicting protein properties in the life sciences”
Chandra et al. eLife 2023 https://doi.org/10.7554/elife.82819

 [MASK] |

D

L
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Machine learning models
trained on millions of natural
protein sequences

Learn evolutionary information

Useful for predicting:

- amino acid properties
- protein function

- protein structure

- protein interactions


https://doi.org/10.7554/eLife.82819

Pretraining on biophysical simulations can
improve function prediction from limited data
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Prediction performance is protein function dependent
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Biophysical pretraining improves protein fitness
prediction in challenging settings

s | Inear

Positions with mutations observed in training variants
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Biophysical pretraining improves protein fitness
prediction in challenging settings

Position extrapolation: generalizing across sequence positions

s | Inear

Positions with mutations observed in training variants
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Prediction at positions with no mutations observed
in training variants

Regime extrapolation: predicting how mutations combine
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METL for GFP engineering

Pretraining Finetuning Observed AA designs
on simulated on experimental SX S-mutants 9x 10-mutants
GFP variants GFP variants Simulated | | r. Mutations observed |
Pretraining annealing rl—l—m-l-m—n in experimental
[ ] [ I METL-Local optimizetion | [ | ) training variants
[D] |:{> model for |:{>
[ ] [ GFP brightness Unobserved AA designs ] Mutations not observed
( T TN ( T | )| Finetuning Sx 5-mutants 5Xx 10-mutants in experimental
[ ] training variants
20M examples w/ 64 examples w/ M TT TN N /

up to S mutations avg 3.9 mutations

Chase
Freschlin




METL for GFP engineering
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METL conclusions and questions

Simulations can help overcome experimental data scarcity
METL can guide wet lab protein design

What protein functions are more compatible with
evolutionary versus biophysical modeling?

How can we better customize biophysical simulations?

Biophysics-based protein language models for protein engineering

Sam Gelman, Bryce Johnson, "' Chase Freschlin, Sameer D'Costa, "' Anthony Gitter,
Philip A. Romero

https://doi.org/10.1101/2024.03.15.585128
https://github.com/gitter-lab/metl
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METL future directions

Can we do active learning with the biophysical simulations?

Guide simulator as the model trains based on where it has
poor generalization performance
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Should we be doing this?



Lessons from cinema: July 21, 2023

The 3 'Godfathers' Of Al
Have Won The Prestigious

S1M Turing Prize
L - |
“We shouldn’t be too surprised when the most

powerful stereotype machine ever constructed
spits out stereotypes”

- Michael Baym in a recent discussion about modern Al
7 —_—




Lessons from cinema: July 21, 2023




Benefits and harms of Al in synthetic biology

Community is most concerned with viruses and toxic agents

Risks of software and models versus the wet lab techniques
that deploy them

Al researchers should not be the only experts making these
decisions but must accept responsibility for their work
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