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Synthetic biology



Microbial Evolution and Growth Arena (MEGA) plate

Observing rapid bacterial evolution in the lab

https://theory.labster.com/mega_plate/

Baym et al. Science 2016 doi:10.1126/science.aag0822

https://doi.org/10.1126%2Fscience.aag0822


Baym et al. Science 2016



Scientific Background on the 
Nobel Prize in Chemistry 2018 

Directed evolution
Frances H. Arnold 
awarded 1/2 the 
Nobel Prize in 
Chemistry 2018 



Emmanuelle Charpentier 
and Jennifer A. Doudna 
awarded the Nobel Prize 
in Chemistry 2020 

Emmanuelle Charpentier and Jennifer A. Doudna. © Nobel Media. Ill. Niklas Elmehed

CRISPR/Cas9 genome editing

First CRISPR therapy FDA approved 
in December 2023

Casgevy for sickle cell disease

BSIP SA/Alamy Stock Photo



AI-guided synthetic biology
and protein engineering



Why is protein engineering important?

Proteins can be modified to have biomedical applications

PDB 2QMT

Proteins as 
medicines

PDB 3W21

Proteins as 
biological 
factories

Gomez 2023 doi:10.1002/anie.202301370

PDB 7M0O

Proteins for 
herbicide 
tolerance



Why is protein engineering so hard?
5%

95%

Natural proteins do not initially 
do the job we want

Need to engineer (modify) them 
by changing their sequenceMQHTYPAQLMRFGTA

Amino acid sequence

Where do we modify the sequence? How many changes? Which changes?
MQHTYPAQLMRFGTAARAEHMTIAAAIHALDADEADAIVMDIVPDGERDAWWDDEGFSSSPFTKNAHHAGIVATSVTLGQLQREQGDKLVSKAAEYFGIACRVNDGLRTTRFVRLFSDALDAKPLTIGHDYEVEFLLATRRV

YEPFEAPFNFAPHCDDVSYGRDTVNWPLKRSFPRQLGGFLTIQGADNDAGMVMWDNRPESRAALDEMHAEYRETGAIAALERAAKIMLKPQPGQLTLFQSKNLHAIERCTSTRRTMGLFLIHTEDGWRMFD

MQHTYPASLMRFDTA

MQPPYPAQLMRFGPA

MQHTKPAQLMRCGTA

MNHTYWAQLMRFGTE



How does AI improve protein engineering?

Goal:
MQHTYPASLMRFDTA

AI model Predicted protein function Candidate sequence 
modification

Training the AI model

Inaccurate 
predictions

MQHTKPAQLMRFGTA

MQCTYPAQLMRFGTA

MQHTYPAQLMRTTTA

MQHTSPAFLMRFGTA

…

~100 experimental 
measurements

Gelman 2024 doi:10.1101/2024.03.15.585128

MQHTYPAQLRRFGQA

MQHTYLAQLMRWGTH

MQVTYPAQLMRFGTA

MQHTYPAGLMRFGTA

MQHTPPAQLMQFGTA

MAHTYPAQLMRAGTA

…

~10M simulated 
measurements

Accurate 
predictions

Mutational Effect
Transfer Learning (METL)



Supervised learning to predict protein function

Variant Score

D138N, K140E -2.35

N127A -4.00

K180N, A182D -4.14

D74G, I126T 1.20

Sequence-function 
examples 

10s-100s of thousands of 
protein variants characterized 
by deep mutational scanning

Gelman et al. PNAS 2021 doi:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms

Sam Gelman



Supervised learning to predict protein function
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Supervised 
learning models

10s-100s of thousands of 
protein variants characterized 
by deep mutational scanning

Tested linear regression and fully 
connected, sequence convolutional, and 

graph convolutional neural networks

Gelman et al. PNAS 2021 DOI:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms

Sam Gelman



Supervised learning to predict protein function

Variant Score
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Supervised 
learning models

Predict scores 
for new variants

10s-100s of thousands of 
protein variants characterized 
by deep mutational scanning

Tested linear regression and fully 
connected, sequence convolutional, and 

graph convolutional neural networks

Variant Score

G177L, M189T ?????

L142K ?????

Variant Score

G177L, M189T 0.003

L142K -0.421

Gelman et al. PNAS 2021 DOI:10.1073/pnas.2104878118
https://github.com/gitter-lab/nn4dms

Sam Gelman



Example: predicting GB1 IgG binding
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True score

Linear regression Sequence convolutionFully connected

True score True score

Small domain from streptococcal protein G that binds mammalian IgG
Train supervised learning models on 16,384 sequence-function examples



Models struggle with less training data

GB1 training examples
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Models struggle with less training data

GB1 training examples
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32 examples

16,384 examples



METL: Mutational Effect Transfer Learning

Transfer learning based on biophysical simulations

1 Simulate protein 
variants with Rosetta

2 Train a model to predict 
the Rosetta energies

3 Transfer representation to 
experimental data

Sam Gelman

Bryce JohnsonMany slides and figures from Sam Gelman



METL step 1. Generate biophysical simulations

Local mode: 
Generate 
biophysical 
simulations for 
one specific 
protein

GB1 example

Protein of interest

Millions of variants

Local

Energies (55 total)

PDB Variant
total
score

dslf
fa13

fa
atr

…

2QMT E34R,L53M -237.1 0.12 24.2 …

+ millions of simulated variant effects



Local mode: 
Generate 
biophysical 
simulations for 
one specific 
protein

GB1 example

Protein of interest

Millions of variants

Local

Energies (55 total)

PDB Variant
total
score

dslf
fa13
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2QMT N2A -222.8 0.34 24.3 …

+ millions of simulated variant effects

METL step 1. Generate biophysical simulations



Runtime ≈35,000 
compute-days
(powered by CHTC 
and OSG Consortium)

150 diverse proteins

30M variants

Global

Energies (55 total)

PDB Variant
total
score

dslf
fa13

fa
atr

…

2QMT E34R,L53M -237.1 0.12 24.2 …

2QMT N2A -222.8 0.34 24.3 …

+ millions of simulated variant effects

Global mode: 
Generate 
biophysical 
simulations for 
diverse protein 
structures

METL step 1. Generate biophysical simulations



Runtime ≈35,000 
compute-days
(powered by CHTC 
and OSG Consortium)

150 diverse proteins

30M variants

Global

Energies (55 total)

PDB Variant
total
score

dslf
fa13

fa
atr

…

2QMT E34R,L53M -237.1 0.12 24.2 …

2QMT N2A -222.8 0.34 24.3 …

1CVJ K6N,A18D -119.2 0.11 50.1 …

+ millions of simulated variant effects

Global mode: 
Generate 
biophysical 
simulations for 
diverse protein 
structures

…

METL step 1. Generate biophysical simulations



METL step 2. Train model to predict energies
Model learns a representation based on the Rosetta energies

Relative position encoding
based on protein 3D structure

Transformer encoder

Based on attention 
mechanism

Predicts outputs of 
biophysical 
simulations

Amino acid 
sequence input

Pooling supports 
different seq lengths

Local → 2M params
Global → 20M params



METL step 3. Transfer to experimental data

Transformer encoder

Transformer encoder

Layer 3Layer 2Layer 1

Energy 1

Energy 2

Energy N

AA sequence

Pretrained local or global model



METL step 3. Transfer to experimental data

Transformer encoder

Layer 1 Functional 
score

Layer 2
New 
Layer

Fine tuning

Transformer encoder

Layer 3Layer 2Layer 1

Energy 1

Energy 2

Energy N

AA sequence

AA sequence

Pretrained local or global model

10s to 1000s of experimental sequence-function examples



Evaluating METL on diverse protein datasets

Dataset Description Assay Len Examples

avGFP Green fluorescent protein Brightness 237 51,714

DLG4
Postsynaptic density protein 95 

(PDZ3 domain)
CRIPT binding 66 517,653

GB1 Protein G (B1 domain) IgG binding 56 536,084

Pab1
Poly(A)-binding protein

(RRM2 domain)
mRNA binding 75 37,710

Ube4b
Ubiquitination factor E4B

(U-box domain)
Ubiquitin 

ligase activity
102 88,375



Compare to evolutionary protein language models

“Transformer-based deep learning for predicting protein properties in the life sciences” 
Chandra et al. eLife 2023 https://doi.org/10.7554/eLife.82819

Predict hidden amino acids in protein sequence

Predict next amino acid in protein sequence Machine learning models 
trained on millions of natural 
protein sequences

Learn evolutionary information

Useful for predicting:
- amino acid properties
- protein function
- protein structure
- protein interactions

https://doi.org/10.7554/eLife.82819


Pretraining on biophysical simulations can 
improve function prediction from limited data



Prediction performance is protein function dependent



Biophysical pretraining improves protein fitness 
prediction in challenging settings



Biophysical pretraining improves protein fitness 
prediction in challenging settings



METL for GFP engineering

Phil
Romero

Chase
Freschlin



METL for GFP engineering

Phil
Romero

Chase
Freschlin

16 of 20 designs 
are functional in 
this challenging 
setting



METL conclusions and questions

Simulations can help overcome experimental data scarcity

https://doi.org/10.1101/2024.03.15.585128
https://github.com/gitter-lab/metl

METL can guide wet lab protein design

What protein functions are more compatible with 
evolutionary versus biophysical modeling?

How can we better customize biophysical simulations?

https://doi.org/10.1101/2024.03.15.585128
https://github.com/gitter-lab/metl


METL future directions

Can we do active learning with the biophysical simulations?

Guide simulator as the model trains based on where it has 
poor generalization performance

Barrio-Hernandez et al. Nature 2023 doi:10.1038/s41586-023-06510-w

https://doi.org/10.1038/s41586-023-06510-w


Should we be doing this?



Lessons from cinema: July 21, 2023

“We shouldn’t be too surprised when the most 
powerful stereotype machine ever constructed 

spits out stereotypes”
- Michael Baym in a recent discussion about modern AI



Lessons from cinema: July 21, 2023



Benefits and harms of AI in synthetic biology

Community is most concerned with viruses and toxic agents

Risks of software and models versus the wet lab techniques 
that deploy them

AI researchers should not be the only experts making these 
decisions but must accept responsibility for their work
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