
Introduction Setup Interactive Jobs JupyterHub Conclusions

HTCondor and Interactive use
A success story

Oliver Freyermuth, Michael Hübner

University of Bonn
freyermuth@physik.uni-bonn.de,michael.huebner@uni-bonn.de

12th July, 2024

1/ 32

mailto:freyermuth@physik.uni-bonn.de,michael.huebner@uni-bonn.de

Introduction Setup Interactive Jobs JupyterHub Conclusions Introduction Classical Setup Our setup

Physics Institute at University of Bonn
over 280 members in 28 working groups, plus users from related Physics institutes
and with HTC workloads
Biggest particle accelerator run by a German university (‘ELSA’, 164.4 m
circumference) with two experiments (� 50 people)
Groups from:

particle physics: ATLAS, Belle II, COMPASS/AMBER, Alice, LHCb, . . .
hadron physics
detector development
photonics
theory groups
economics

Extremely diverse requirements on software environments & job resources.

since 2017: HTCondor with interactive-first concept

2/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Introduction Classical Setup Our setup

‘Interactive First’
Scientific software tends to require more and more dependencies (user-defined
software stacks)
) often via containers, Python environments, CVMFS trees,. . .
Users do not want to hassle with the setup on their desktop, on which they prefer
to use a modern OS
) Decent versions of IDEs, graphics editors, browsers etc.
Goals:

Offer a way to SSH or ‘browse’ into the required environment
This environment should be the same as the batch environment
The admins (we) must be happy to operate it

Solutions
Two parts of this talk:

SSH into containers on Batch resources
JupyterHub on Batch resources

3/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Introduction Classical Setup Our setup

Classical Cluster Setup (until 2017)

bafgwPI Network
(GPN)

BAF Network
(cluster)

...

NAT
DHCP fwd

MDS001

...

WN001

CephFS
Servers

condor-cm1
condor-cm2

desktop001
desktop002
desktop003

...

BONNET
(campus network / internet)

cvmfs-stratum0
cvmfs-stratum1a
cvmfs-stratum1b
squid1
squid2

De
sk

to
ps

W
orker Nodes

gw
1

gw
2

WN002

WN003

MDS002
MDS003

OSD002
OSD001login

job submit
test jobs

develop code

submit002
submit001

...

Job submission

4/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Introduction Classical Setup Our setup

Our setup: ‘Submit Locally, Run Globally’

cvmfs-stratum0

bafgwPI Network
(GPN)

BAF Network
(cluster)

...

xrootd
nfs

NAT
DHCP fwd

MDS001

...

WN001

CephFS
Servers

condor-cm1
condor-cm2

desktop001
desktop002
desktop003

...

BONNET
(campus network / internet)

cvmfs-stratum1a
cvmfs-stratum1b

CCB

De
sk

to
ps

W
orker Nodes

gw
1

gw
2

WN002

WN003

MDS002

squid1
squid2

MDS003
OSD002
OSD001Job submission

5/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Key Changes Configuration

Key changes in our new setup (since 2017)
All desktops, worker nodes, condor central managers fully puppetized, for
HTCondor: HEP-Puppet/htcondor (!HEPiX Autumn 2019)

can set up queue super-users, block users from submission, set up for Apptainer,. . .
No login / submission nodes:
‘use your desktop’ or a ‘rack-mounted desktop’ from remote / mobile systems
Condor central managers in desktop network
Desktops running Debian 11 (ongoing migration to Debian 12)
Cluster nodes running RockyLinux 8
Full containerization (all user jobs run in containers)
Containerization decouples OS upgrades from user jobs
Cluster file system (CephFS) directly accessible from Desktop machines via NFS for
access to results (!HEPiX Autumn 2019)

Different connectivity for worker nodes: Partially InfiniBand FDR (56 Gbit=s),
partially via 10 Gbit=s ethernet, partially (different location) via 1Gbit=s ethernet

6/ 32

https://github.com/HEP-Puppet/htcondor
https://indico.cern.ch/event/810635/contributions/3592911/
https://indico.cern.ch/event/810635/contributions/3592916/

Introduction Setup Interactive Jobs JupyterHub Conclusions Key Changes Configuration

HTCondor Configuration

Authentication via Kerberos / LDAP
Issues with ticket lifetime don’t hit us heavily — automatic prolongation by sssd (up
to one week)

Node health script
prevent blackholing
critical for interactive use (responsiveness)
considering a HEALTHY_FOR_INTERACTIVE_USE flag

Automated reboots: Draining with backfilling
(uptime over 30 days, security updates . . .)

Fraction of ‘interactivve’ resources always available
Ensure responsiveness

7/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Choice of Container Runtime

Requirements
Aiming for unprivileged lightweight runtime
Needs working HTCondor support including interactive jobs
Allow image distribution via CernVM FS

CernVM FS
Read-only file system with aggressive caching and deduplication
Ideal for many small files and high duplication factor
Perfect match for unpacked containers
‘Unpacked’ is (mostly) a requirement for rootless operation

) Settled on Apptainer for now, but wishing for support for off-the-shelf solutions such
as Podman / runc.

8/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Apptainer (fork of Singularity)
Supports privileged and unprivileged operation
Linux Foundation project, optimized for HPC use:
https://apptainer.org/
Process and file isolation, optional network isolation (no kernel isolation)
Commonly used in HEP community

However, compared to competing solutions. . .
Non-negligible rate of CVEs and breakage from new / changed functionality
Not admin-friendly (e. g. breaking CentOS 7 support by default before its EoL)
No distro packaging for Debian / RHEL, hence no LTS packaging
Bundling of dependencies makes it hard / impossible for distros to keep packages
secure: https://blogs.gentoo.org/mgorny/2021/02/23/why-not-rely-on-app-developer-to-handle-security/

Reimplements existing standards (e. g. no build from Dockerfile)

⇒ Use it, but avoid a lock-in as far as possible.
9/ 32

https://apptainer.org/
https://blogs.gentoo.org/mgorny/2021/02/23/why-not-rely-on-app-developer-to-handle-security/

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Container Build Workflow
All containers based on official DockerHub base images
Ubuntu 20.04, Debian 11 / 12, RockyLinux 8 / 9
Rebuilt at least daily with Apptainer recipe (site-specifics)
Deployed to our own CVMFS, kept there for at least 30 days after build
Unpacked images also work with other runtimes (only site-specifics in Singularity /
Apptainer recipes slightly builder-dependent)

CVMFS usage over half a year, Containers (daily) & Software

10/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Container Site-Specifics
Compatibility with HEP experiments’ requirements (HEP_OSlibs, ALRB)
User data directory in environment variable, quota check tool
DBUS hacks for X11 applications in containers
More X11 hacks:
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SingularityCondor
HTCondor resource requests (login message, environment)
lmod environment modules integration:

module load mathematica/14.0.0

Source user-defined .bashrc , potentially OS-specific, from shared file system
Necessary hacks for CUDA / GPU support
OpenMPI without HTCondor inside containers (via HTChirp)
Allow users to relay mail
Timezone setup
Add packages requested by users 11/ 32

https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs/tree/master
https://twiki.atlas-canada.ca/bin/view/AtlasCanada/ATLASLocalRootBase2
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SingularityCondor
https://lmod.readthedocs.io
https://github.com/htcondor/htchirp

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

HTCondor Integration
All jobs forced into Singularity / Apptainer:

SINGULARITY_JOB = true

Users can select from pre-build containers (‘choose your OS’)

CHOSEN_IMAGE = "$(ROCKY9_DEFAULT_IMAGE)"
CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is "Debian11",

"$(DEBIAN11_DEFAULT_IMAGE)", $(CHOSEN_IMAGE)),!

CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is "Debian12",
"$(DEBIAN12_DEFAULT_IMAGE)", $(CHOSEN_IMAGE)),!

CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is "Rocky8",
"$(ROCKY8_DEFAULT_IMAGE)", $(CHOSEN_IMAGE)),!

SINGULARITY_IMAGE_EXPR = $(CHOSEN_IMAGE)

Paths to most recent image per OS and available OSes provided by
include command : someScript.sh

12/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

‘Choose your OS’
Users add to their Job ClassAd:

+ContainerOS = "Rocky9"

Their jobs run in a container
Same for interactive jobs (‘login-node experience’!)
Small fractions of worker nodes exclusively for interactive jobs
But: Interactive jobs can go to any slot!
Resource-request specific tuning via /etc/profile possible:

REQUEST_CPUS=$(awk '/^RequestCpus/{print $3}' ${_CONDOR_JOB_AD})
export NUMEXPR_NUM_THREADS=${REQUEST_CPUS}
export MKL_NUM_THREADS=${REQUEST_CPUS}
export OMP_NUM_THREADS=${REQUEST_CPUS}
export CUBACORES=${REQUEST_CPUS}
export JULIA_NUM_THREADS=${REQUEST_CPUS}

) Part of HTCondor 8.9.4 and later! (see #7296),
already extended with more flags.

13/ 32

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=7296

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Remaining issues in 9.0. . . (we should upgrade!)
Difference between batch and interactive (source /etc/profile needed in
batch)
(may be worked around with a job wrapper launching a login shell)
Interactive jobs are not yet contained within cgroups.
Need some obscure extra bind mounts:

SINGULARITY_BIND_EXPR =
"/pool,/usr/libexec/condor/,/cephfs,/cvmfs,/dev/infiniband",!

) Need to include EXECUTE directory (/pool) and /usr/libexec/condor
here!

However. . .
We have been running with this for over seven years now.
Users are delighted by the choices, and ssh -X effectively works!
We must upgrade to a newer HTCondor release which will bring improvements.

14/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Container Usage

2021

2024

15/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Container Usage: Well accepted!

Instead of ssh to a login node, users run:

freyermu@exp199:~$ condor_submit -interactive -append '+ContainerOS="Rocky9"'
Submitting job(s).
1 job(s) submitted to cluster 15.
/usr/bin/xauth: file /pool/condor/dir_489494/.Xauthority does not exist
Welcome to sloti_2_1@wn003.baf.physik.uni-bonn.de!
Your condor job is running with pid(s) 489575.
You requested 2 core(s), 2000 MB RAM, 1024000 kB disk space.
freyermu@wn003(Rocky9) ~ $

Well accepted by users!

16/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Container Runtime Container Build Interactive Use Experiences

Things fresh users tend to stumble upon
Sometimes, new users try to run CentOS 7 code on RockyLinux 8 or similar. . .
(legacy, ‘inherited’ job scripts or instructions)
Workflow without shared file system between Access Point and Execution Point:

If offered, does invite to mis-use as ‘home directory’
Need to understand file transfer possibilities
Access to resources (Git etc.) possible in interactive jobs

No ‘good’ way to run an IDE in the same environment (but similar for login nodes).
) Remote editing via condor_ssh_to_job , i. e. ‘edit locally, execute globally’?
There are some nitty-gritty details here, wrapper-script for VS Code upcoming!

Expectation
VS Code remote editing will hopefully fix some of those woes (and create others?), also
there is JupyterHub. . .

17/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Why JupyterHub?
JupyterHub is a web ‘hub’ providing access to notebooks
Notebooks can use various kernels (Python, R, Julia, ROOT / C++,. . .)
Interactive graphics, terminals, X11 via XPRA / noVNC,. . .
Collaborative work possible (shared filesystems, git, Real-Time Collaboration. . .)

In summary. . .
JupyterHub allows interactive work from a browser, without installing software on end
user device.

Usual use cases
Rapid prototyping / ‘Trying things out’
Teaching (algorithms, methods)
Sharing of small analyses (self-documenting)
Remote work (with notebooks / remote desktop in browser)

18/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

An example workspace

19/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Operational hurdles
Commonly operated on dedicated cloud infrastructure (e. g. Kubernetes))
Typically runs in different environment than other scientific use cases
Combines a plethora of versions and packaging systems (pip, conda, npm, yarn,
. . .) ! Upgrade headache
Very active development with breaking changes
In many cases problematic security concepts
(e. g. Hub server needs direct access to execute nodes)
Operationally, a Hub is ‘chained’ to the resource admins
(note this also prevents safe use of distributed / federated resources)

Need to overcome networking issue for use in a split desktop / cluster network
Let us investigate JupyterHub networking!
(if we find a workaround, this will also allow to scale out!)

20/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Networking with JupyterHub

JupyterHub (may be reachable world-wide)

User with
web browser

https
Configurable HTTP Proxy

Hub

/hub/

- AuthN/Z
- Spawning Notebook

/api/auth

/user/[name]/

21/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Networking with JupyterHub

JupyterHub (may be reachable world-wide)

User with
web browser

https
Configurable HTTP Proxy

Hub

/hub/

- AuthN/Z
- Spawning

HTC/HPC Cluster
(NAT, isolated, local or remote)

Notebook
- as compute job
- containerized
- access to special
 resources (GPUs, parallel FS)

/user/[name]/

/api/auth ?

21/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Networking with JupyterHub

The inbound connection to the notebook will use a random port, defined by the
spawned notebook
The (potentially world-reachable) Hub needs direct access to the execute node
Additionally, no / reduced firewalling on the execute node possible (random ports)

If somebody takes over your web service. . .
. . . the attacker may have direct access to your cluster network!

Can we overcome this issue?
Can HTCondor help out?

22/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Networking with HTCondor (simplified)

HTCondor execute
& submit node(s)
keep connection to CCB

HTCondor
Submit Node

HTC/HPC Cluster
(NAT, isolated, local or remote)

HTCondor
Central Manager & CCB

Bidirectional connection
established

Startd service on
execute node
contacts submit node
on request relayed
via CCB

Note:
Via the shared port daemon,
only a single port needs to be open
on the submit node and CCB node

23/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Networking with HTCondor (simplified)
CCB (HTCondor Connection Brokering) allows submit node to connect to execute
node by leveraging a reverse connection
This works both for daemon communication and command line tools
It overcomes the common case of isolated execute nodes
Notably, it also works for condor_ssh_to_job
Regular HTCondor AuthN/Z applies first
For SSH, a temporary pair of keys is used
That means we can SSH into any worker node which has outbound connectivity,
even without inbound connectivity

Can we forward the port of the notebook via an SSH tunnel?
Tested and confirmed.
For JupyterHub integration: Batch spawner needs to be extended.
(mote details in the Backup slides)

24/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

JupyterHub in Production

How to use the implementation?
Full implementation in this pull request (awaiting review):
https://github.com/jupyterhub/batchspawner/pull/200

For maximum profit, HTCondor setup with CCB and shared port configuration
required
Can also be adapted for other batch systems and environments

JupyterHub in production since 2021. . .
Puppetized VM setting up the Hub web service
Regular containers extended with a VirtualEnv & Lab extensions, based on
Anaconda, activated via Lmod
Plan to build environments via automated workflows (CI/CD)
Distributed via CVMFS

25/ 32

https://github.com/jupyterhub/batchspawner/pull/200
https://github.com/TACC/Lmod
https://cernvm.cern.ch/fs/

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Components of our setup

Authentication
Login to the hub creates a Kerberos TGT (via PAM)
Kerberos used for job submission (and inter-daemon communication with
HTCondor)

File system?
Currently, use HTCondor file transfer: transfer a �/jupyter directory into the job and
back when job exits:

when_to_transfer_output = ON_EXIT_OR_EVICT
+SpoolOnEvict = False

26/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster
(NAT, isolated, local or remote)

HTCondor
Central Manager & CCB Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

27/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster
(NAT, isolated, local or remote)

HTCondor
Central Manager & CCB Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

XPRA

RStudio

Theia
jupyter-
server-
proxy

27/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Some impressions: X11 applications in your browser

28/ 32

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Some impressions: Customized login page

see also: JupyterHub issue 3414

29/ 32

https://github.com/jupyterhub/jupyterhub/issues/3414

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Some impressions: Customized FormSpawner

see also: unibonn/ubnjupyterspawner (GitHub)

30/ 32

https://github.com/unibonn/ubnjupyterspawner

Introduction Setup Interactive Jobs JupyterHub Conclusions Why? Operation Networking Setup Experiences

Experiences and Outlook for JupyterHub

Experience
Hub environment maintenance (naturally) remains a hassle
Scientific use at our site remains low (less than 500 notebook sessions in 3 years)

It seems notebooks are often used for plotting, which are then run locally.
Note We have a centrally operated Hub for teaching purposes.

Significant interest for use in research platform projects:
Overlay batch systems can be used with this implementation
JupyterHub Unchained: Resources can be used without privileges and without
dropping the firewalls
Allows for use in a federated research platform

Oliver Freyermuth, Katrin Kohl, Peter Wienemann
Unleashing JupyterHub:
Exploiting resources without inbound network connectivity using HTCondor
Computing and Software for Big Science 5, 24 (2021)

31/ 32

https://doi.org/10.1007/s41781-021-00063-1
https://doi.org/10.1007/s41781-021-00063-1
https://doi.org/10.1007/s41781-021-00063-1

Introduction Setup Interactive Jobs JupyterHub Conclusions Conclusions

Conclusions
‘Interactive first’ approach (with containers) works very well for us!
Getting rid of login nodes solved a lot of issues and headaches
Containers with different software environments well-accepted and heavily used
JupyterHub can scale to federated infrastructures (thanks to HTCondor)

Thank you!
All of this also works in a federated environment / with opportunistic resources
Tools to auto-scale worker nodes which register into an overlay batch system:

COBalD — the Opportunistic Balancing Daemon
TARDIS — The Transparent Adaptive Resource Dynamic Integration System

developed by KIT, used e. g. to run WLCG jobs, in a federated research platform. . .

32/ 32

https://cobald.readthedocs.io/
https://cobald-tardis.readthedocs.io/

Thank you

for your attention!

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Health Checking

Node health script (critical for interactive use and to prevent blackholing):
run via STARTD_CRON
can pick up admin-enforced state via Puppet
(e.g. for maintenance)
picks up state from ‘reboot-needed’ cronjob
Captures common node overload issues:

Heavy I/O on local disks (iowait)
Heavy swapping (HTCondor cannot limit swap usage yet, in our version)

Critical to ensure jobs (especially interactive jobs) are routed to responsive nodes
Considering a HEALTHY_FOR_INTERACTIVE_USE flag

34/ 32

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Node health checking

35/ 32

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Node reboot handling

Detection mainly via needs-restarting -r

Start of drain smeared out over 10 days
While nodes are draining, still accept jobs running shorter than the longest job

36/ 32

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Behind the scenes: Entering containers via nsenter

Enter the namespaces the container runtime has created
) Essentially, ‘attach’ to the container!
Compatible with any container runtime using namespaces
(with potential quirks)
Other container runtimes one could think of:

Charliecloud (https://hpc.github.io/charliecloud/)
Even more lightweight (no PID / network namespaces)
PID namespace could be handled by HTCondor
Code is short and easily auditable
Fully unprivileged container build, Dockerfile support, extensive test suite

Podman / runc (https://podman.io/)
Included since RHEL 7.6 with official support, distro packages also for Debian
Can be used with alias docker=podman
Can run rootless
CRIU integration (freeze, live-migrate)
Still requires bind-mount target directories to exist for rootless (GitHub issue 1671)

37/ 32

https://hpc.github.io/charliecloud/
https://podman.io/
https://github.com/opencontainers/runc/issues/1671

Backup Health Checking Reboot Handling Containers Batch spawner Setup

JupyterHub Batch spawner

Concept
1 A job is submitted to the batch system (‘spawning’)
2 JupyterHub monitors the state of the job
3 Payload starts (single-user notebook): random listen port (TCP)
4 Payload contacts JupyterHub server (fixed API port), communicates the random

port on the execute node
5 Classically: JupyterHub tells ‘configurable HTTP proxy’ to proxy the user directly

to the random port on the execute node

JupyterHub batch spawner needs to be extended
1 Add a generic, optional ‘connect to job’ functionality
2 In case of HTCondor, leverage condor_ssh_to_job to forward the port to

localhost on the Hub
38/ 32

Backup Health Checking Reboot Handling Containers Batch spawner Setup

JupyterHub Batch spawner

Our generic implementation
1 Payload has communicated random port (startup finished)
2 If required for the ‘connect to job’ command:

1 JupyterHub selects an unused, local random port
2 Remote and local port passed to the ‘connect to job’ command

This allows to forward from the remote port to an unused, randomized local port
3 ‘connect to job’ command is called as background command
4 Aborted if ‘connect to job’ exits during startup
5 Job killed if connection is lost during session

For CondorSpawner

use condor_ssh_to_job with -oExitOnForwardFailure=yes

override notebook hostname with localhost

39/ 32

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Other Web Services

Adding a proxy to the notebook
jupyter-server-proxy extension adds another proxy layer (HTTP / WebSockets)
inside single-user notebooks
Single point of entry to notebook remains one port (i.e. our SSH tunnel)
Proxying is done after authentication
Allows to access tools external to JupyterLab, for example:

X11 desktop (e.g. via XPRA) via jupyter-xprahtml5-proxy
Tools with HTML5 frontends (RStudio, Theia,. . .)

Note: Secure authentication should happen on shared nodes!

40/ 32

https://github.com/jupyterhub/jupyter-server-proxy
https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

Backup Health Checking Reboot Handling Containers Batch spawner Setup

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster
(NAT, isolated, local or remote)

HTCondor
Central Manager & CCB Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

XPRA

RStudio

Theia
jupyter-
server-
proxy

41/ 32

	Introduction
	Introduction
	Classical Setup
	Our setup

	Setup
	Key Changes
	Configuration

	Interactive Jobs
	Container Runtime
	Container Build
	Interactive Use
	Experiences

	JupyterHub
	Why?
	Operation
	Networking
	Setup
	Experiences

	Conclusions
	Conclusions

	Appendix
	Backup
	Health Checking
	Reboot Handling
	Containers
	Batch spawner
	Setup

