
Building High Throughput Function-Oriented
Workflows with TaskVine

Douglas Thain and the CCL Team
University of Notre Dame
Throughput Computing 2024
Madison, WI July 2024



How do I organize my work to use HTCondor?
https://condor.cse.nd.edu

Unix-Oriented DAGs

Dynamic Task Creation

Dynamic Data Sharing

https://condor.cse.nd.edu


TaskVine is a system for executing data intensive 
scientific workflows on clusters, clouds, and grids from 

very small to massive scale.

TaskVine controls the computation and storage 
capability of a large number of workers, striving to 
carefully manage, transfer, and re-use data and 

software wherever possible.



TaskVine Architecture Overview

HTCondor Pool

Application

TaskVine Mgr

4

tasks results

Remote
ServicesShared

Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
App

The TaskVine manager directs 
workers to read data from remote 
sources, run tasks on that data, and 
share data with each other.  

TaskVine leaves data on workers in 
the cluster wherever possible!



TaskVine Worker

f3

f5

url
sd698d

url
wq73dv

temp
xyz123

file
su3g2n

buffer
r223cdf

T1

data.tar.gz

output.txt

T2

configinput.txt

output.txt

Task 1 Sandbox Task 2 Sandbox

Application

TaskVine Mgr

tasks results RAM CPU
0

CPU
1

GPU
0

GPU
1

File = Single file or complex dir.

Manager directs all file 
movements and accesses.

Files are immutable and given a 
unique cache name.

Each task runs in a sandbox 
with a private namespace and 
an allocation of cores, memory, 
disk, and gpus.

TaskVine WorkerTaskVine Worker



API: Declare Files Explicitly

import ndcctools.taskvine as vine

m = vine.Manager(9123)

file   = m.declareFile("mydata.txt")
buffer = m.declareBuffer("Some literal data")
url    = m.declareURL("https://somewhere.edu/data.tar.gz")
temp   = m.declareTemp();

data     = m.declareUntar( url )
package  = m.declareStarch( executable )



API: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

t.add_input(url,"input.data")
t.add_output(temp,"output.data")

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)



API: Execute Python Function

task = vine.PythonTask(simulate_func,molecule,parameters)

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)

. . .

print(t.result)



Building Up a Large DAG Manually

x = m.define_file()
y = m.define_file()
z = m.define_file()
. . .

a = Task()
b = Task()
c = Task()
. . .

a.add_input(x,"data")
a.add_output(y,"temp")
. . .



From Tasks to Libraries and Functions

TaskInput Output

LibraryTask

FArgs Result

A Task runs to completion a single 
time, reading input files, and 
producing output files.

A LibraryTask contains a Function.
It receives arguments, produces 
results, but then stays running, 
waiting for the next invocation.

Args
Args

Result
Result



Functions as a Service - Install Library

# Define ordinary Python functions
def my_sum(x, y):
    return x+y

def my_mul(x, y):
    return x*y

# Create a library object from functions
L = m.create_library_from_functions(

"my_library",my_sum, my_mul)

# Install the library on all workers.
m.install_library(L)

worker

11

worker

worker

L

L

L

py

py

py

m
an

ag
er



Functions as a Service - Invoke Function

# Define a function invocation and submit it

for i in range(1,100):
  t = vine.FunctionCall("my_library","my_sum",10,i)

worker

12

worker

worker

L

L

L

py

py

py

λ

m
an

ag
er

λ
λ

λλλ

λλλ

λλλ

Simply converting "import tensorflow" into the preamble 
of a LibraryTask saves 1.2GB of Python libraries, 30K 
metadata system calls, and 5-10s latency per 
FunctionCall.  

David Simonetti and Thanh Phung



Building Up a Large DAG Manually

x = m.define_file()
y = m.define_file()
z = m.define_file()
. . .

a = Task()
b = FunctionCall()
c = FunctionCall()
. . .

a.add_input(x,"data")
a.add_output(y,"temp")
. . .



Building Up a Large DAG with Dask

Ben Tovar



Example Application: DV3-Small
● Consumes 1.5TB Data
● Produces 17K Tasks
● Uses 2400 cores on 200 nodes.
● Runs in 3545s (~1 hour)

Reshaping HEP Data Analysis Apps

Kelci
Mohrman

Kevin 
Lannon

This is not bad,
but can we make it 
near-interactive?

Connor
Moore



More Tasks Requires Smaller Tasks
and that Requires Lower Overhead!

Ideal

N
od

es
 R

un
ni

ng

Elapsed Time
N

od
es

 R
un

ni
ng

Elapsed Time

Ideal
Actual

Actual

Long Running
N nodes for 60 minutes

High Concurrency
N*10 nodes for 6 minutes

Use Function
Tasks

to Reduce
Overhead!



Evolution of Software Stack

DV3

Coffea

Dask

Work Queue

HDFS

Stack 1

3545s



Evolution of Software Stack

DV3

Coffea

Dask

Work Queue

HDFS

DV3

Coffea

Dask

Work Queue

VAST

Stack 1 Stack 2

3545s 3378s



Evolution of Software Stack

DV3

Coffea

Dask

Work Queue

HDFS

DV3

Coffea

Dask

Work Queue

VAST

DV3

Coffea

Dask

TaskVine

VAST

Stack 1 Stack 2 Stack 3

3545s 3378s 730s



Evolution of Software Stack

DV3

Coffea

Dask

Work Queue

HDFS

DV3

Coffea

Dask

Work Queue

VAST

DV3

Coffea

Dask

TaskVine

VAST

DV3

Coffea

Dask

TaskVine
+ Functions

VAST

Stack 1 Stack 2 Stack 3 Stack 4

3545s 3378s 730s 272s

13x
faster!



Reason 1: Worker to Worker Data Access

B. Sly-Delgado, J. Zhou, B.Tovar, and D.Thain, 
"Reshaping High Energy Physics Applications for 
Near-Interactive Execution Using TaskVine", to 
appear at Supercomputing 2024.

Both code and data are retained on 
worker local disks and transferred 
directly between workers as directed by 
the manager.



Reason 2: Functions are Lightweight!

B. Sly-Delgado, J. Zhou, B.Tovar, and D.Thain, 
"Reshaping High Energy Physics Applications for 
Near-Interactive Execution Using TaskVine", to 
appear at Supercomputing 2024.

Tasks

Functions

Running LibraryTasks maintain code and 
data ready in memory so that function 
invocations are much lighter weight than 
standalone processes.



x

x

High Throughput Analysis Stack

Familiar Python interface to code and data.

Lightweight task and data scheduling.

High throughput resource management.



x

High Throughput Analysis Stack

Python based workflow generation.

Lightweight task and data scheduling.

High throughput resource management.



Parsl + TaskVine Exploiting Functions

Large Scale Neural Network Inference
100K tasks on 150 x 32c workers

25

T. Phung, C. Thomas, L. Ward, K. Chard, D. Thain, Accelerating 
Function-Centric Applications by Discovering, Distributing, 
and Retaining Reusable Context in Workflow Systems, ACM 
International Symposium on High-Performance Parallel and 
Distributed Computing (HPDC), June, 2024.

● L1 - Traditional Access to HPC Filesystem.
● L2 - Tasks with data cached on workers.
● L3 - Functions retaining state at workers.

http://ccl.cse.nd.edu/research/papers/function-context-hpdc-2024.pdf
http://ccl.cse.nd.edu/research/papers/function-context-hpdc-2024.pdf
http://ccl.cse.nd.edu/research/papers/function-context-hpdc-2024.pdf


Current Status of TaskVine

26

● TaskVine is a component of the 
Cooperative Computing Tools (cctools) 
from Notre Dame alongside Makeflow, 
Work Queue, Resource Monitor, etc.

● Release 7.11.1 made in June 2024.
● Research software with an engineering 

process: issues, tests, manual, examples. 
● We are eager to collaborate with new 

users on applications and challenges!

This work was supported by
NSF Award OAC-1931348

conda install -c conda-forge ndcctools

https://cctools.readthedocs.io

https://cctools.readthedocs.io


For more information…

27

https://cctools.readthedocs.io
https://dthain.github.io

This work was supported by
NSF Award OAC-1931348

Cooperative Computing Lab
Staff and Students

conda install -c conda-forge ndcctools

https://cctools.readthedocs.io
https://dthain.github.io

