
Ric Evans

Research Software Engineer

UW-Madison
IceCube / WIPAC

Throughput Computing
2024 – HTC 24

IceCube’s SkyDriver
An Application of the Event Workflow
Management System for Scalable
Solutions of Distributed Workflows

The Event Workflow Management System (EWMS)
Question

How can we take a workload,
consisting of millions or billions of tasks,

and group it into tens of thousands of jobs?

2

Event-Granular HTC Workflows

3

To be most efficient, we want to subdivide a

workflow into “smallest” unit of work (“events”)

➢ Multi-Messenger Astrophysics events

(IceCube and LIGO triggers)

➢ Astronomical observations (images)

➢ Cryogenic electron microscopy (cryo-EM)

data

➢ Optical Character Recognition on pages in a

book

➢ and more!

HTCondor is great at aggregating distributed
resources and orchestrating workflows, but…

➢ Imposes 1:1 job-task mapping
➢ Needs O(>30 min) jobs to be most efficient

○ Task lifetime >> Startup+Scheduling time

If we want to work on events

➢ Much shorter runtime per task
➢ 1:N job-task mapping
➢ Dynamic allocation of inputs and outputs

HTCondor’s Traditional Use

4

size = runtime

× 1000+

HTCondor is great at aggregating distributed
resources and orchestrating workflows, but…

➢ Imposes 1:1 job-task mapping
➢ Needs O(>30 min) jobs to be most efficient

○ Task lifetime >> Startup+Scheduling time

If we want to work on events

➢ Much shorter runtime per task
➢ 1:N job-task mapping
➢ Dynamic allocation of inputs and outputs

HTCondor’s Traditional Use

5

size = runtime

× 1000+

× 1000+

IceCube Neutrino Observatory

Why does IceCube need many, many
short-lived tasks?

6

IceCube Neutrino Observatory

The IceCube Neutrino
Observatory is a cubic
kilometer neutrino telescope
located at the geographic
South Pole premier facility for
detecting neutrinos > 10 GeV,
particularly > 1 TeV
astrophysical neutrinos.

7

Background

A neutrino is detected by IceCube!

Where did it come from?

Where do we need to point other

telescopes for immediate

follow-up observations?

8

The Situation

Most accurate and detailed directional reconstruction comes by scanning

across the sky in varying granularity: O(100k) pixels

We need to reconstruct a Sky Map

9 HEALPix algorithm

“night sky”

The Problem

The (Original) Skymap Scanner

1. Preempt N HTCondor nodes for immediate
availability

2. Generate O(100k) events (5-tuples)

3. Group O(1k) events into N “input” object

➢ 1 job gets 1 object, O(1k) events

4. Submit to HTCondor for N jobs

5. Wait for every job to finish while collecting
N transferred output objects

6. Assemble resulting skymap

➢ Produce the most probable direction and error

10

The Solution

input

out out out

Three False Assumptions

11

The Problem with the Solution

😕
➢ We know how to group input events because we have

a homogeneous infinitely big compute pool.

We have a heterogeneous and finite pool

➢ Task processes will never fail.

CPU crashes happen. What if last event fails?

➢ No one will be mad if we take away their computing
resources.

Yes they will, especially before a conference

Three False Assumptions

12

The Problem with the Solution

😕
➢ We know how to group input events because we have

a homogeneous infinitely big compute pool.

We have a heterogeneous and finite pool

➢ Task processes will never fail.

CPU crashes happen. What if last event fails?

➢ No one will be mad if we take away their computing
resources.

Yes they will, especially before a conference

Three False Assumptions

13

The Problem with the Solution

😟
➢ We know how to group input events because we have

a homogeneous infinitely big compute pool.

We have a heterogeneous and finite pool

➢ Task processes will never fail.

CPU crashes happen. What if last event fails?

➢ No one will be mad if we take away their computing
resources.

Yes they will, especially before a conference

Three False Assumptions

14

The Problem with the Solution

🫠
➢ We know how to group input events because we have

a homogeneous infinitely big compute pool.

We have a heterogeneous and finite pool

➢ Task processes will never fail.

CPU crashes happen. What if last event fails?

➢ No one will be mad if we take away their computing
resources.

Yes they will, especially before a conference

➢ Design a generalized design, the

Event Workflow Management

System

➢ Make an instance of EWMS at

IceCube, called SkyDriver (with a

few domain-specific add-ons)

➢ Run Skymap Scanner tasks

within the SkyDriver service

EWMS Design + SkyDriver Application

15

Our Vision

 SkyDriver

EWMS

Skymap Scanner
Tasks

domain-specific
add-ons

16

SkyDriver-EWMS Architecture

User requests a new scan

17

SkyDriver-EWMS Architecture

Workflow Management Service

18

SkyDriver-EWMS Architecture

Data Distribution Service & Message Queue Broker

19

SkyDriver-EWMS Architecture

SkyDriver sends events to MQ

20

SkyDriver-EWMS Architecture

Task Management Service on HTCondor Access Point

21

SkyDriver-EWMS Architecture

HTCondor starts up jobs

22

SkyDriver-EWMS Architecture

Task Pilot (Worker) on HTCondor Execution Point

23

SkyDriver-EWMS Architecture

Workers retrieve input-events & send output-events via the MQ

24

SkyDriver-EWMS Architecture

SkyDriver receives output events from MQ

25

SkyDriver-EWMS Architecture

SkyDriver receives output events from MQ

26

SkyDriver-EWMS Architecture

SkyDriver receives output events from MQ

27

SkyDriver-EWMS Architecture

SkyDriver receives output events from MQ

Motivation & Goals

How can we help HTCondor support
multiple events per job?

28

1:N job-task pattern

➢ Complement HTCondor's Capabilities

Thrive in heterogeneous, dynamic environments
(faster CPUs do more work, etc.)

➢ Support Scientific Reproducibility

Build a robust, repeatable system

➢ A Service-First Design

Build a platform, not an application

➢ Make everyone happy :)

What does EWMS need to do?

29

Our Goals

��

➢ Complement HTCondor's Capabilities

Thrive in heterogeneous, dynamic environments
(faster CPUs do more work, etc.)

➢ Support Scientific Reproducibility

Build a robust, repeatable system

➢ A Service-First Design

Build a platform, not an application

➢ Make everyone happy :)

What does EWMS need to do?

30

Our Goals

��

➢ Complement HTCondor's Capabilities

Thrive in heterogeneous, dynamic environments
(faster CPUs do more work, etc.)

➢ Support Scientific Reproducibility

Build a robust, repeatable system

➢ A Service-First Design

Build a platform, not an application

➢ Make everyone happy :)

What does EWMS need to do?

31

Our Goals

��

➢ Complement HTCondor's Capabilities

Thrive in heterogeneous, dynamic environments
(faster CPUs do more work, etc.)

➢ Support Scientific Reproducibility

Build a robust, repeatable system

➢ A Service-First Design

Build a platform, not an application

➢ Make everyone happy :)

What does EWMS need to do?

32

Our Goals

��

1. Complement HTCondor's Capabilities

How can we work with heterogeneous
clusters?

33

A few of HTCondor's Exceptional Features:

➢ Guaranteed execution

➢ Extreme scalability

➢ Parallelization without reimplementation

➢ Success in heterogeneous environments

➢ Adaptable to user requirements

How do we complement HTCondor?

34

Complement HTCondor

Paraphrased from the HTCondor Manual

File-transfer system for task I/O (of events) will not suffice:

➢ 1:N tasks are complex
➢ No dynamic scaling task per job

Message passing (MQ):

➢ Separates event I/O from job mechanics
○ Additional input(s) are given when needed
○ Outputs are immediately relayed in real-time

➢ Doesn’t care about fluxuations in job count
○ Can we increase/decrease number of jobs?

How can a job have dynamically allocated
inputs, outputs, and tasks?

35

Complement HTCondor

▢ guaranteed execution

▢ extreme scalability

▢ parallelization without

reimplementation

☑ success in heterogeneous

environments

▢ adaptable to user requirements

File-transfer system for task I/O (of events) will not suffice:

➢ 1:N tasks are complex
➢ No dynamic scaling task per job

Message passing (MQ):

➢ Separates event I/O from job mechanics
○ Additional input(s) are given when needed
○ Outputs are immediately relayed in real-time

➢ Doesn’t care about fluxuations in job count
○ Can we increase/decrease number of jobs?

How can a job have dynamically allocated
inputs, outputs, and tasks?

36

Complement HTCondor

▢ guaranteed execution

▢ extreme scalability

▢ parallelization without

reimplementation

☑ success in heterogeneous

environments

▢ adaptable to user requirements

Many possible protocols

➢ Low-level and foundational decision
➢ Expensive to change after implemented

Created software to be flexible with any of these:

➢ RabbitMQ
➢ Apache Pulsar
➢ NATS.io

On Choosing an MQ Protocol

37

Complement HTCondor

Credit: Jessie Thwaites

Many possible protocols

➢ Low-level and foundational decision
➢ Expensive to change after implemented

Created software to be flexible with any of these:

➢ RabbitMQ
➢ Apache Pulsar
➢ NATS.io

(Not) Choosing an MQ Protocol

38

Complement HTCondor

▢ guaranteed execution

☑ extreme scalability

▢ parallelization without

reimplementation

☑ success in heterogeneous

environments

☑ adaptable to user

requirements

Resilient to CPU crashes – Built-in failover mechanism

➢ Ack-last & fail-fast paradigm
○ Acknowledge input event only when task is done
○ MQ will redeliver to another worker when no ack
○ “Dead Letter” queue for problem events

Backward compatible – invisible from user’s POV

➢ Existing physics algorithms use files as input

Pilot-Based Workers

39

Complement HTCondor

☑ guaranteed execution

☑ extreme scalability

☑ parallelization without

reimplementation

☑ success in heterogeneous

environments

☑ adaptable to user

requirements

2. Support Scientific Reproducibility

How can we be assured science results
are not due to software bugs?

40

What software was used in this analysis?

➢ Need to document version identifier with results

What else can affect the software?

➢ Need to know what we’re testing is what we’re

running in production

➢ Using containers guarantees consistent reuse

Versioning & Containerization

41

Reproducibility

NASA wind tunnel test

For every run of SkyDriver, store:

➢ Startup parameters

➢ User-defined tags

○ Used to find results, limited in size

➢ Metadata

○ Timestamps, basic runtime stats

➢ Results A.K.A. Skymaps

Put it all in a centralized database!

42

Reproducibility

SkyDriver
DB

Feedback-Driven Enhancements

➢ Don’t spend time designing a solution for no
problem

Open Beta Testing (Gamma Testing)

➢ Advertised as a prototype, un-ready system, with
an end date goal (Q4 2023) – team effort

➢ Created slack channel for this purpose, closed
channel when beta testing was completed

Include Users Throughout the Process

43

Reproducibility

3. A Service-First Design

What do users need to know to be
successful?

44

If our system is not simple to onboard,

it won’t be used!

HTTP / REST user interface

➢ Standardized JSON input – auto-documented

○ Validation by JSON Schema & OpenAPI

➢ Multiple image versions available, including

feature-branch versions

○ SkyDriver uses Skymap Scanner Images

○ Allows users to test customizations

How do we get people to use our system?

45

A Service-First Design

Looking Back and Forward

How’s EWMS going?

46

Challenges

47

Looking Back and Forward

Oversimplified Timeline

2022: MQ-equipped

Skymap Scanner

2022-23: SkyDriver

2024: Generalized EWMS

➢ How generalized of a system do we want?

➢ Many unique tools: Kubernetes, Helm, Docker, Python
Packaging, REST, Input Validation, …

➢ Some errors only appear at massive workflow scales

➢ Removing tech debt from original Skymap Scanner

○ Created “organically”
○ “How does this work?”... “I don’t remember.”

➢ Small development team size (1.1 full-time)

➢ Release generalized EWMS (currently in alpha)

➢ Automatic job scaling by detecting MQ usage and

availability of compute resources in HTCondor

pool

➢ Real-time monitoring dashboard

➢ Support scheduling for DAG workflows

EWMS: Ongoing and Upcoming Features

48

Looking Back and Forward

How can we take a workload, consisting of millions or billions of tasks, and group it
into tens of thousands of jobs?

➢ Complement HTCondor's Capabilities
Using message passing-equipped worker pilots to thrive in heterogeneous,
dynamic environments

➢ Support Scientific Reproducibility
Providing dependable software, developed with user feedback

➢ A Service-First Design
Putting the user’s POV first, simple interfaces and removed complexities

➢ Made everyone happy :)

Summary

49

Looking Back and Forward

Acknowledgements

PIs (EWMS)

➢ Miron Livny

➢ Brian Bockelman

➢ Benedikt Riedel

Developers

➢ Ric Evans (me)

➢ Benedikt Riedel

➢ David Schultz

IceCubers

➢ Massimiliano Lincetto

➢ Tianlu Yuan

➢ Claudio Kopper

➢ Erik Blaufuss

➢ Christina Lagunas

➢ Robert Stein

National Science Foundation Funding

➢ OAC #2103963 + OPP #2042807

50

Thank You!

51

52

Two IceCube Use Cases

CASE 1: Massive Scale

Real-time Scans

Fast & Resource Intensive -> High Priority

➔ O(10k+) CPUs, spun up ASAP

CASE 2: Moderate Scale

Historical Catalog & Simulation

Steady/Predictable -> Lower Priority

➔ Varying # of CPUs, subject to availability

53

The Problem

54

SkyDriver-EWMS Architecture

Development Methodology

55

Reproducibility

Minimum viable product

➢ Wait to implement enhancements
until needed

Test every enhancement & bug fix

➢ Use non-domain specific data &
workflows

Do enhancements in order of priority

➢ Track in GitHub

1. Test at no scale – fast

➢ Test individual components

2. Test at mini scale – cheap

➢ 1 or 2 jobs in automated CI

environment (Github Actions)

Test, scale up, test, scale up, test, …

56

Reproducibility

3. Test at large scale – conservative

➢ Use production cluster w/

downsized configuration

4. Test at full scale

➢ Use production configuration

5. Publish Release

SkyDriver – Worker / Scanner Client POV

57

