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Introduction
• Lead for the NRAO Algorithms R&D Group 

• NRAO: A NSF funded national observatory to build and operate large radio 
astronomy facilities: VLA, ALMA, VLBA, Greenbank Observatory

• Builds and maintains scientific software for calibration and image reconstruction
– Widely used in the RA community internationally

• This talk: Overview of the RA data processing: What?  Why?  How?

                Work done with CHTC/PATh, NRP: Status, challenges, future

• Technical talk (remotely) by Felipe Madsen: 

    Date: Thur, the 11th ,   11:15 AM

    Title: Implementation of NRAO’s imaging workflow on HTCondor 

27 antennas, in NM 50 antennas, in Chile
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The Very Large Array (NM, USA)

● 27 antennas

● Antennas movable
 on rails 
    1 – 27 Km radius

● Spread over 
  27 Km radius

● Size of the “lens”
   30 Km

● Frequency range
 300 MHz – 50 GHz



4S. Bhatnagar:  HTC 2024, Madison, WI, July 8th 2024

The next-generation VLA (ngVLA)

● ~300 antennas

● Spread across 1000s
  Km

● Frequency range
 1 GHz – 110 GHz

300 antennas in NM,UT,AZ,TX,MX
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Other RA Observatories in the world 

VLA
CARMA

LWA

ALMA

MeerKAT

PAPER

ASKAP

MWA

ATCA

GMRT

WSRT

LOFAR

SKA (to be built)



6S. Bhatnagar:  HTC 2024, Madison, WI, July 8th 2024

Other RA Observatories in the world 
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Aperture Synthesis Imaging: Why?

• Single dish Resolution too low for many scientific investigations
– Limited collecting area + resolution limits sensitivity at low frequencies 

Single dish resolving power

Biggest steerable single dish
   = 100 m
   

100m

Wavelength
Dish Diameter

Greenbank Observatory, WV
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Aperture Synthesis Imaging: Why? 

• Resolution determined by the max. separation between antennas
– Sensitivity determined by the number and size of antennas

Synthesis Array resolving power

Max. separation in VLA
   = 35 km
 
Resolution: ~ 350x better

35 Km

Wavelength
Max. separation between antennas
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier domain
– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure one Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier domain
– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure another Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier domain
– Many antennas separated by 10s – 100s Km

– Each pair of antennas measure another (one) Fourier Component

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier domain
– Many antennas separated by 10s – 100s Km

– All pairs with one antenna measure N-1 Fourier Component = 26

– Synthesized aperture equal to the largest separation between antennas

The Fourier Plane
The Data Plane
The UV-Plane
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Aperture Synthesis Imaging: How?

• An indirect imaging technique that collects data in the Fourier domain
– Many antennas separated by 10s – 100s Km

– All pairs with all antenna measure N(N-1)/2 Fourier Component = 351

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w
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Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Measure N(N-1)/2 x 2 Fourier components over 2 integration time =  702

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w
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Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Measure N(N-1)/2 x 10 Fourier components over 10 integrations = 7020

 

– Synthesized aperture equal to the largest separation between antennas

Digital Backend Correlator
Massively Parallel H/w
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Aperture Synthesis Imaging: How?

• Aperture Synthesis
– Use Earth Rotation Synthesis to fill the Fourier plane

– All pairs with all antenna measures N(N-1)/2 Fourier Component

– Fourier Components measured over 10 hr: O(1012)

• Data Size: 10s TB now, 100s TB with ngVLA      ExaBytes for SKA-class telescopes

– Data not on a regular grid.  

Digital Backend Correlator
Massively Parallel H/w



17S. Bhatnagar:  HTC 2024, Madison, WI, July 8th 2024

Interferometric Imaging

• Raw image (FT of the raw data) is dynamic range limited

• Processing:   Remove telescope artifacts to reconstruct the sky brightness

• RA image reconstruction is a High-Performance-Computing-using-Big-Data 
problem

• Using dHTC + distributed data collection. Hard to even know everything that  
                    can go wrong!

Dynamic range:  1 : 1000Dynamic range:  > 1 : 1000, 000

Raw ImageReconstructed Image
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System level description
• Typical data processing workflow

FFT

IFFTde-Gridding

No. of iterations

● Image domain visualization 
● Image plane operations

Gridding
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System level description
• Typical data processing workflow + Size of Computing (SofC) 

Imaging:                                                  Nvis x O(103-4) FLOPs (Complex, SP + DP)
Image-plane deconvolution of the PSF :  Niter x O((Npix)  FLOPs (Real-valued, SP)

FFT

IFFTde-Gridding

No. of iterations

● Image domain visualization 
● Image plane operations

Gridding

Imaging Deconvolution



20S. Bhatnagar:  HTC 2024, Madison, WI, July 8th 2024

System level description
• Typical data processing workflow + Size of Computing (SofC)

Imaging:                                                  Nvis x O(103-4) FLOPs (Complex, SP + DP)
Image-plane deconvolution of the PSF :  Niter x O((Npix)  FLOPs (Real-valued, SP)

FFT

IFFTde-Gridding

Re-processing

No. of iterations

● Image domain visualization 
● Image plane operations

Gridding
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System level description
• Typical data processing workflow + Size of Computing (SofC)

Imaging:                                                  Nvis x O(103-4) FLOPs (Complex, SP + DP)
Image-plane deconvolution of the PSF :  Niter x O((Npix)  FLOPs (Real-valued, SP)
Calibration:                                              O(Nvis)            FLOPs (Complex, SP)
                                                                Nvis x O(103-4) FLOPs (Complex, SP + DP)

Calibration

X ij=
V ij
V ij
M

O(Nvis)
FFT

IFFTde-Gridding

Re-processing + SelfCal 

No. of iterations

● Image domain visualization 
● Image plane operations

Gridding
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System level description
• Typical data processing workflow + Size of Computing (SofC)

Imaging:                                                  Nvis x O(103-4) FLOPs (Complex, SP + DP)
Image-plane deconvolution of the PSF :  Niter x O((Npix)  FLOPs (Real-valued, SP)
Calibration:                                              O(Nvis)            FLOPs (Complex, SP)
                                                                Nvis x O(103-4) FLOPs (Complex, SP + DP)
Flagging:                                                 Trivial → dominant!

RFI mitigation Calibration

● Image domain visualization 
● Image plane operations

f (V ij ,V ij
M )

O(Nvis)
FFT

IFFT

Gridding

de-Gridding

X ij=
V ij
V ij
M

No. of iterations

Re-processing + SelfCal 

● Algorithm decision not yet made
● Cost range: from trivial to more
 than imaging
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System level description
• Typical data processing workflow + Size of Computing (SofC)

RFI mitigation Calibration

● Image domain visualization 
● Image plane operations

f (V ij ,V ij
M )

O(Nvis)
FFT

IFFT

Gridding

de-Gridding

X ij=
V ij
V ij
M

No. of iterations

Re-processing + SelfCal 

● Algorithm decision not yet made
● Cost range: from trivial to more
 than imaging

Madsen, Robnett, Rowe

“M
aj

o
r 

cy
cl

e
”

Currently the biggest SofC driver

Imaging:                                                  Nvis x O(103-4) FLOPs (Complex, SP + DP)
Image-plane deconvolution of the PSF :  Niter x O((Npix)  FLOPs (Real-valued, SP)
Calibration:                                              O(Nvis)            FLOPs (Complex, SP)
                                                                Nvis x O(103-4) FLOPs (Complex, SP + DP)
Flagging:                                                 Trivial → dominant!
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The Computing Problem: Why Gridding?
• Raw data is not on a regular grid

- FFT require re-sampling on a regular grid

Raw data Re-sampled
On grid

Raw image

FFT

u

v

Regular
Grid

Raw data

NU-FFT with the physics/optics of the telescope 
encoded in specialized kernels
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Requirements: HPC + Big Data
• Estimated Size of Computing

– ngVLA: O(1013 - 14) x (10x10) x ...= ~50 PFLOP/s

• Large scale parallelization to process large data volume

– Not a simulation!
– PFLOPS to keep-up with the data rates

– 100s of Tera Bytes for a typical observing session

• Computing needs to be efficient and 24x7
– Not a one-shot experiment on a homogeneous super-computer 

• Requirement: Seamless computing 24x7 on a heterogeneous cluster

u

v
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Algorithm Architecture
• Stable, Scalable Architecture

• Cast RA algorithms in standard terminology: Derivative, Hessian, Update,…
• Decompose into functionally separable components which can scale individually and together

V obs = GM S F BM I M + noise χ2 = ∑i
|Data i−Modeli(P)|

2

P i
k+1 = P i

k + [H ij ]
−1 f ( ∂ χ2

∂Pi
k
) ; [H ij ]=

∂2χ2

∂P i
k∂P j

k

Step size DerivativeModel update
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Algorithm Architecture: Components 
view

P j
k +1 = P j

k + [H ]−1 f ( ∂ χ2

∂P j
k )

a.k.a. the  “Loop gain”

a.k.a. the “Major Cycle”

Compute Residual Image
 a.k.a. the “Minor cycle”
 
 Update Model Image

Multi-process parallelSerial

FFT

IFFTde-Gridding

No. of iterations
Gridding
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Scaling: On multi-CPU/cores hardware

 

ngVLA would need O(Million)-way parallelization!

Data scatter overheads
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Scaling on GPU: Using Kokkos 

Gridding+Degridding

Multi-core
CPU

Single CPU-core
+GPU

Multi CPU-cores
+GPU

~120x

ngVLA Computing Memo #5, #7

S
p

e
e

d
u

p
 w

.r
.t

. 
C

P
U

ngVLA would need O(103)-way parallelization!
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• What does it mean in real-life application?
● 200-pointing wide-band mosaic: 7-10 days  vs 2.5hr

• Many data sets in the telescope archive remain 
UNPROCESSED due to computing limitations

• Brings down ngVLA need to O(103)-way 
parallelization!

Scaling in real-life

ngVLA would need O(103)-way parallelization!

Current telescope
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• Deployed on a cluster of GPUs (100) on the PATh facility in collaboration with

● CHTC (UW-M), NRP,  SDSC (UCSD)
● + Multiple university computer centers across the US

Throughput measurements

● Throughput: O(1 TB/hr)
● 10 iterations in ~24 hr

● Previous attempts:
~14 days per iteration!

● This is still a faction of the 
required throughput!

Enabling-tech for many unprocessed
projects in the current archive

https://science.nrao.edu/enews/17.3/index.shtml#deepimaging

https://science.nrao.edu/enews/17.3/index.shtml#deepimaging


32S. Bhatnagar:  HTC 2024, Madison, WI, July 8th 2024

• Deployed on a cluster of GPUs (100) on the PATh facility 
https://science.nrao.edu/enews/17.3/index.shtml#deepimaging 

Deepest Image in the radio band of the 
Hubble Ultra-Deep Field

Hubble Ultra-Deep Field
Deepest image with the VLA
RMS ~ 1uJy/b

Data volume:          2 TB

Effective data I/O: 20 TB

Throughput:         ~1 TB/hr

https://science.nrao.edu/enews/17.3/index.shtml#deepimaging
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• The LibRA project was used for all RA domain functionality 

• Project goals: Open-source library of RA algorithms, code re-use, relocatable s/w, ease of use
• Derived from CASA Scientific.  Now an independent code base + build system

• Enables collaborations with RA groups and end-users   +  with other domains: HPC, HTC, Medical imaging,…

The LibRA Project: Library of RA algorithms
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• The LibRA project was used for all RA domain functionality 

• Project goals: Open-source library of RA algorithms, code re-use, relocatable s/w, ease of use
• Derived from CASA Scientific.  Now an independent code base + build system

• Enables collaborations with RA groups and end-users   +  with other domains: HPC, HTC, Medical imaging,...

• Directly use the scientific layer via standalone applications
– Deployable on external heterogeneous cluster of CPUs + GPUs

• Automate chores: cmake build system, containerized deployment, Py binding,…

• Interfaces: Interactive, commandline, Py, C++

The LibRA Project: Library of RA algorithms

User interface HPG
CS

Scientific
RA

Drivers
bash, Py, Slurm, HTCondor,...

https://github.com/ARDG-NRAO/LibRA

https://github.com/ARDG-NRAO/LibRA
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• Deployed on a cluster of GPUs (100) on the PATh facility in collaboration with

● CHTC (UW-M), NRP,  SDSC (UCSD)
● + Multiple university computer centers across the US

Throughput measurements

● Throughput: O(1 TB/hr)
● 10 iterations in ~24 hr

● Previous attempts:
~14 days per iteration!

● This is still a faction of the 
required throughput!

● Can distributed network of GPUs
deliver?

Enabling-tech for many unprocessed
projects in the current archive
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Current/near future needs
• KSG data volumes:  ~50 TB per hour

Throughput:               O(50) TB per hour

Effective I/O:              few x O(50) TB
– Iterative algorithms need caching to keep data closer to the compute 

• Computing Infra development  
– Inter-leaved processing of multiple projects

– Interfacing with telescope storage/archive, pipeline processing systems

» OSDF, Pelican?

• Edge Caching, Data re-use (iterative algorithms)

• Parallel processing
– On connected cluster of GPUs (in-house?)

– On distributed resources: NRP, PATh, Super computer centers,…
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Current/near future needs
• Collaboration to access existing human and computing resources

– Expect runtime of order days (not hours!)

– Data volume of order 10s of TeraBytes; effective I/O  5 -- 10x larger

– Mitigate I/O overheads due to iterative re-use (caching)

• Non-hero run:  More use by the wider RA community
– Unprocessed data from projects in the telescope archive

– Computing power to get imaging quality compatible with telescope capabilities

• Use for algorithms R&D
– Development, debugging

– I/O, Cache friendly algo

• Async gather
– Currently a Barrier
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Conclusions
• Parallelization at multiple scales necessary for RA imaging

• Use of GPUs is also necessary

• Effective data I/O: Cache friendly applications and infra necessary

• New algorithms which can scale on large clusters (distributed or connected)

• Use of performance engineering tools: E.g. Kokkos 
– Seamless deployment on heterogeneous cluster of GPUs 

• Collaborations between observatories and HTC/HPC groups, computer centers, and 
industry partners for infra development is going to be more critical than in the past
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Thank you all!
• CHTC/PATh :     Brian Bockelman, Miron Livny, Christina Koch, Brian Lin, Greg Thain

                           Derek Weitzel (UNL)

                           Mats Rynge (USC)

• SDSC (UCSD) : Frank Wuerthwein, Cynthia Dillon

• NRP/SDSC :       John Graham, Igor Sfiligoi, Dima Mishin, Mahidhar Tatineni, Dmitry 
Mishin

• Kokkos (SNL) : Christian Trott, Lebrun-Grandie,...

• NVIDIA :            Tom Gibbs, Eliot Eshelman, Adam Thompson, Mike O’Keeffe

• NRAO CASA Team : International team of radio astronomer/scientists

• CASACore :               International team for the RA infrastructure library (US, EU, JP, 
TW, AU, SA)

• NRAO Algorithms R&D Group (ARDG): Felipe Madsen, Mingue “Genie” Hsieh, 
Preshanth Jagannathan, K. Scott Rowe, Martin Pokorny (now @CalTech)

       LibRA - A library of RA algorithms

https://gitlab.nrao.edu/ardg/libra
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