Back to the Basics of
DAGMan

Automating Workflows via DAGMan
By: Cole Bollig
Software Developer for CHTC
Throughput Computing 2024

Why use DAGMan?

AUTOMATION

* DAGMan provides a way for the researcher to organize
HTCondor jobs into workflows to be automatically
submitted.

« DAGMan guarantees jobs run in a particular order as
described by the researcher.

* This is useful for jobs that require the output of
another job as input.

Output Input
» Results.out

What is DAGMan?

DAGMan stands for Directed Acyclic Graph (DAG) Manager

Directed Acyclic Graph (DAG):

* A topological ordering of vertices (“nodes”)
established by directional connections
(“edges”)

* The acyclic aspect requires a start and end
with no looped repetition.

Directed Acyclic Graph - Wikipedia

dor

HTCondor DAGMan Documentation (CHTG I‘"gwoot PATh

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html

What is a DAGMan Node?

* A nodeis a unit of work comprising of up to three parts:

2.

Note: DAGMan views a list of
jobs as a single entity.
Meaning all must succeed to
be considered successful.

(Required) A list of one or more jobs. The core of a node!

Awesome-Science.sub

executable = ./find_waldo.py
arguments = ”--scan --retry 3”
input = “book.png”
output = “found.png”
request_disk = 3GB

request _cpus=4

queue 100

cHrc HICondSr path

Node

PRE Script

List of Jobs

POST Script

Creates
Nodes
(AI BI CI D

Edges

Creates{

Simple Example

)

diamond.dag (dag_dir) /
JOB A A.sub A.sub B.sub
JOB B B.sub C.sub D.sub
JOB C C.sub diamond.dag
JOB D D.sub

PARENT A CHILD B C
PARENT B CCHILD D

(other job files)

Note: All parts of the DAG (nodes, edges,
modifications) must be declared in the DAG

description file prior to submission.

cHrc HICondSr path

Diamond DAG visualized

Running a DAG

Submitting a DAG

DAG Submission commands:
condor_submit_dag dag_file
htcondor dag submit dag_file

S htcondor dag submit diamond.dag

DAG 6 was submitted.

S condor_submit_dag diamond.dag

File for submitting this DAG to HTCondor : diamond.dag.condor.sub
Log of DAGMan debugging messages : diamond.dag.dagman.out
Log of HTCondor library output : diamond.dag.lib.out

Log of HTCondor library error messages : diamond.dag.lib.err

Log of the life of condor_dagman itself : diamond.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 6.

condor submit dag Man Pages CHIGC I-ITCOndUr PATh

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit_dag.html

What happens?

« Submitting a DAG to HTCondor produces an HTCondor scheduler
universe job for the DAGMan process (DAGMan job proper).

Lots of files produced:
* |Informational DAG files
« *.dagman.out = DAG progress/error output
* *.nodes.log = Collective job event log (Heart of DAGMan)

e * metrics = JSON formatted DAG information
e DAGMan job proper files

e * condor.sub = Submit File

* *.dagman.log =Job Log
e *lib.err = Job Error
e *lib.out = Job Output

Monltorlng a DAG

* Simply use condor_q to view the DAG in queue
e Use —nobatch —dag to see a broken-out view of the DAG and
running jobs (with associated node names).
e Can even use condor_watch_q

$ condor_q

-- Schedd: COLES _AP@ : <127.0.0.1:49473?... @ 07/06/23 10:14:23

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cole diamond.dag+6 /7/6 10:14 B 1 4 7.0

$ condor_g -nobatch -dag
-- Schedd: COLES AP@ : <127.0.0.1:49473?... @ ©7/06/23 10:14:25
OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
6.0 cole /7/6 ©9:18 0+00:00:11 R 0O 0.5 condor_dagman ...
7.0 | -A 7/6 ©9:18 0+00:00:00 I 0O 0.1 /bin/sleep 15

cHrc HICondSr path

Checking a DAGs status

htcondor dag status <Job-ld>

[cabollig@ap2002 ~]$ htcondor dag status 1746219
DAG 1746219 [science.dag] has been running for 09:33:35
DAG has submitted 184 job(s), of which:
41 are held.
138 have completed.
5 have failed.
DAG contains 328 node(s) total, of which:
[#] 138 have completed.
[=] 41 are running: 41 jobs.
[-] 121 are waiting on other nodes to finish.
[!] 23 will never run.
[!] 5 have failed.
DAG had at least one node fail. Only 91.46% of the DAG can complete.

DAG is 42.07% complete.

cHic HCondd pam,

Software Suite

All Things Come to an End

|deally everything runs smoothly, and the DAG completes successfully.
But just in case...

Node Failure = DAG failure

e DAGMan will try to make as
much forward progress until no
more nodes can be executed
due to dependencies.

* |f any of a nodes associated jobs
fail (non-zero exit code) then the
node is failed.

cHrc HIConddr paTh

All Things Come to an End

|deally everything runs smoothly, and the DAG completes successfully.
But just in case...

What happens when a DAG fails?
e DAGMan produces a rescue file
*.rescue001
* Simply fix any issues and resubmit the
DAG. DAGMan will read the most
recent rescue file to skip rerunning
already successfully completed nodes.

cHic HCondd pam,

Other DAGMan Features

13

DAGMan Node Scripts

 Scripts provide a way to preform tasks at key points in a node’s
lifetime. Each script type has different execution time.

* Pre Scripts run before a Node’s jobs are submitted to the Schedd.
» Post Scripts run after a node jobs have exited the Schedd queue.

* All DAGMan scripts run on the Access
Point (AP) and not the Execution Point
(EP).

Node

PRE Script

example.dag
JOB A job1.sub

List of Jobs

SCRIPT PRE A verify.sh
SCRIPT POST A check.sh SRETURN

POST Script

DAGMan Scripts Documentation CHTC HTQWOQ Or PATh

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html

Automatically Retry a Failed Node

 Retry a node up to N times when said
node has failed for any reason (PRE
Script Failed, an associated job failed,
POST Script failed)

 When retired all parts of the node are
re-run. PRE Script, POST Script and
the entire list of jobs (even those
previously successful).

e Use UNLESS-EXIT to short circuit retry

DAGMan Retry Documentation GHTC I-"gwoot

dor

RETRY NodeName N

JOB A job1l.sub
JOB B same.sub

JOB C same.sub
JOB D job4.sub

RETRY D 5 UNLESS-EXIT 3

PARENT A CHILD B C
PARENT B C CHILD D

PATh

diamond.dag

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html

Reusing Components with VARS

» Using the VARS command in the DAG description file creates
macros to be used by the job submit description.

 Allows one job submit description to be used for many DAG

nodes.

e (Can pass custom Job Ad
attributes to the node’s jobs
using My. syntax.

* Also has special macros

e S(JOB) becomes node
name

* S(RETRY) becomes
current retry attempt

diamond.dag

JOB A job1.sub
JOB B same.sub
JOB C same.sub
JOB D job4.sub

VARS B country="USA”

VARS C country=“Canada”

PARENT ACHILDB C
PARENT B C CHILD D

v
DAGMan VARS Documenation CHTC HTQWODQU

’

same.sub
executable = my_script.sh
arguments = S(country)
log = S(country)-S(cluster).log
error = S(country)-S(cluster).err
output = S(country)-S(cluster).out
queue

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html

sample.dag

S U B DAG EXT E R N AL é?}?séii%bés)?fERNAL SIM simulation.dag

JOB C job.sub
» To the parent DAG it is just a
single node SCRIPT POST SIM ...
« Can use RETRY RETRY 10 SIM
* Can have Pre and POST Script

 Submits as another DAG to the

PARENT A CHILD SIM

: PARENT SIM CHILD C
Schedd that has its own A
/ e
DAGMan JOb Process and OUtlet / i SUBDAG That runs and manages its
fIIeS' . I - - -»- own DAG in the Queue to analyze
* DAG file and nodes don’t need to some data. :
exist at submission time of S- - M |

parent DAG

« Good for running sub-workflows
where the number of jobs is not
predefined

v
DAGMan Sub-DAGs Documentation (GHTG I'ITQOD_dUr PATh

ttttttttt

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html

Dynamically Run N Nodes

e Useful for when the number of nodes is not known at submission time.

__

parent.dag

JOB A job.sub
SUBDAG EXTERNAL B inner.dag
JOB Cjob.sub

000
B B 000
000

JOB B1 job.sub
JOB B2 job.sub
JOB B3 job.sub

JOB B99 job.sub
JOB B100 job.sub

cHrc HICondSr path

SPLICE

« Splices have their nodes merged into the B\ \
parent DAG | SPLICE X

« Allows easy reusability
» Low strain on the Access Point (AP)
 All splice files must exist at submit time

* Pre and Post scripts cannot run on
splices as a whole

» Splices can not use the RETRY

capability JOB A job.sub

SPLICE X cross.dag
JOB C job.sub

sample.dag

PARENT A CHILD X
PARENT X CHILD C

Q
-
G

DAGMan Splicing Documentation cH'l'c I'"gwoot PATh

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html

Questions?

20

