
Back to the Basics of 
DAGMan

Automating Workflows via DAGMan
By: Cole Bollig

Software Developer for CHTC
Throughput Computing 2024

1



Why use DAGMan?
AUTOMATION
• DAGMan provides a way for the researcher to organize 

HTCondor jobs into workflows to be automatically 
submitted.

• DAGMan guarantees jobs run in a particular order as 
described by the researcher.

• This is useful for jobs that require the output of 
another job as input. 

Simulation AnalysisResults.out
Output Input

2



What is DAGMan?
DAGMan stands for Directed Acyclic Graph (DAG) Manager

Directed Acyclic Graph (DAG):
• A topological ordering of vertices (“nodes”) 

established by directional connections 
(“edges”)

• The acyclic aspect requires a start and end 
with no looped repetition. 

Directed Acyclic Graph - Wikipedia

HTCondor DAGMan Documentation 3

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html


What is a DAGMan Node?

PRE Script

List of Jobs
POST Script

Node• A node is a unit of work comprising of up to three parts:
1. (Optional) A PRE Script.
2. (Required) A list of one or more jobs. The core of a node!
3. (Optional) A POST Script.

Awesome-Science.sub
executable = ./find_waldo.py
arguments = ”--scan --retry 3”
input           = “book.png”
output        = “found.png”
request_disk = 3GB
request_cpus = 4

queue 100

Note: DAGMan views a list of 
jobs as a single entity. 
Meaning all must succeed to 
be considered successful.

4



Simple Example
JOB A A.sub
JOB B B.sub
JOB C C.sub
JOB D D.sub

PARENT A CHILD B C
PARENT B C CHILD D

A

B C

D

diamond.dag Diamond DAG visualized

Creates
Nodes

(A,B,C,D)

Creates
Edges

Note: All parts of the DAG (nodes, edges, 
modifications) must be declared in the DAG 
description file prior to submission.

A.sub       B.sub
C.sub       D.sub
diamond.dag
(other job files)

(dag_dir) /

5



Running a DAG

6



Submitting a DAG

$ condor_submit_dag diamond.dag
-----------------------------------------------------------------------
File for submitting this DAG to HTCondor : diamond.dag.condor.sub
Log of DAGMan debugging messages           : diamond.dag.dagman.out
Log of HTCondor library output                     : diamond.dag.lib.out
Log of HTCondor library error messages      : diamond.dag.lib.err
Log of the life of condor_dagman itself        : diamond.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 6.
-----------------------------------------------------------------------

$ htcondor dag submit diamond.dag
DAG 6 was submitted.

DAG Submission commands:
    condor_submit_dag dag_file
    htcondor dag submit dag_file

7condor_submit_dag Man Pages

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit_dag.html


What happens?
• Submitting a DAG to HTCondor produces an HTCondor scheduler 

universe job for the DAGMan process (DAGMan job proper).

Lots of files produced:
• Informational DAG files

• *.dagman.out 
• *.nodes.log 
• *.metrics  

• DAGMan job proper files
• *.condor.sub 
• *.dagman.log
• *.lib.err
• *.lib.out

=  DAG progress/error output
=  Collective job event log (Heart of DAGMan)
=  JSON formatted DAG information

= Submit File
= Job Log
= Job Error
= Job Output

8



Monitoring a DAG

$ condor_q

-- Schedd: COLES_AP@ : <127.0.0.1:49473?... @ 07/06/23 10:14:23

OWNER    BATCH_NAME     SUBMITTED  DONE  RUN   IDLE  TOTAL JOB_IDS

cole       diamond.dag+6   7/6  10:14    _    _    1    4 7.0

$ condor_q –nobatch -dag

-- Schedd: COLES_AP@ : <127.0.0.1:49473?... @ 07/06/23 10:14:25
 ID    OWNER       SUBMITTED   RUN_TIME ST PRI SIZE CMD

 6.0  cole         7/6  09:18  0+00:00:11 R  0   0.5 condor_dagman ...

 7.0    |-A        7/6  09:18  0+00:00:00 I  0   0.1 /bin/sleep 15

• Simply use condor_q to view the DAG in queue
• Use –nobatch –dag to see a broken-out view of the DAG and 

running jobs (with associated node names).
• Can even use condor_watch_q

9



Checking a DAGs status
[cabollig@ap2002 ~]$ htcondor dag status 1746219
DAG 1746219 [science.dag] has been running for 09:33:35
DAG has submitted 184 job(s), of which:

41 are held.
138 have completed.

5 have failed.
DAG contains 328 node(s) total, of which:

[#] 138 have completed.
[=] 41 are running: 41 jobs.
[-] 121 are waiting on other nodes to finish.
[!] 23 will never run.
[!] 5 have failed.

DAG had at least one node fail. Only 91.46% of the DAG can complete.
[#####################################===========--------------------------------!!!!!!!!!] 
DAG is 42.07% complete.

htcondor dag status <Job-Id>

10



All Things Come to an End
Ideally everything runs smoothly, and the DAG completes successfully.
But just in case…

Node Failure = DAG failure
• DAGMan will try to make as 

much forward progress until no 
more nodes can be executed 
due to dependencies.

• If any of a nodes associated jobs 
fail (non-zero exit code) then the 
node is failed.

A

B C

D

11



All Things Come to an End
Ideally everything runs smoothly, and the DAG completes successfully.
But just in case…

What happens when a DAG fails?
• DAGMan produces a rescue file 

*.rescue001
• Simply fix any issues and resubmit the 

DAG. DAGMan will read the most 
recent rescue file to skip rerunning 
already successfully completed nodes.

A

B C

D

12



Other DAGMan Features

13



DAGMan Node Scripts
• Scripts provide a way to preform tasks at key points in a node’s 

lifetime. Each script type has different execution time. 
• Pre Scripts run before a Node’s jobs are submitted to the Schedd.
• Post Scripts run after a node jobs have exited the Schedd queue.

• All DAGMan scripts run on the Access 
Point (AP) and not the Execution Point 
(EP). PRE Script

List of Jobs
POST Script

Node

14

JOB A job1.sub

SCRIPT PRE A verify.sh
SCRIPT POST A check.sh $RETURN

example.dag

DAGMan Scripts Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-introduction.html


Automatically Retry a Failed Node
• Retry a node up to N times when said 

node has failed for any reason (PRE 
Script Failed, an associated job failed, 
POST Script failed)

• When retired all parts of the node are 
re-run. PRE Script, POST Script and 
the entire list of jobs (even those 
previously successful).

• Use UNLESS-EXIT to short circuit retry

RETRY NodeName N
JOB A job1.sub
JOB B same.sub
JOB C same.sub
JOB D job4.sub

RETRY D 5 UNLESS-EXIT 3

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

15DAGMan Retry Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-completion.html


Reusing Components with VARS
• Using the VARS command in the DAG description file creates 

macros to be used by the job submit description.
• Allows one job submit description to be used for many DAG 

nodes.
JOB A job1.sub
JOB B same.sub
JOB C same.sub
JOB D job4.sub

VARS B country=“USA”
VARS C country=“Canada”

PARENT A CHILD B C
PARENT B C CHILD D

diamond.dag

executable = my_script.sh
arguments = $(country)
log               = $(country)-$(cluster).log
error           = $(country)-$(cluster).err
output        = $(country)-$(cluster).out

queue

same.sub• Can pass custom Job Ad 
attributes to the node’s jobs 
using My. syntax.

• Also has special macros
• $(JOB) becomes node 

name
• $(RETRY) becomes 

current retry attempt

16DAGMan VARS Documenation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-advance-functionality.html


SUBDAG EXTERNAL
• To the parent DAG it is just a 

single node
• Can use RETRY
• Can have Pre and POST Script

• Submits as another DAG to the 
Schedd that has its own 
DAGMan job process and output 
files.
• DAG file and nodes don’t need to 

exist at submission time of 
parent DAG
• Good for running sub-workflows 

where the number of jobs is not 
predefined

JOB A job.sub
SUBDAG EXTERNAL SIM simulation.dag
JOB C job.sub

SCRIPT POST SIM …
RETRY 10 SIM

PARENT A CHILD SIM
PARENT SIM CHILD C

A

SIM

C

SUBDAG That runs and manages its 
own DAG in the Queue to analyze 
some data. 

sample.dag

17DAGMan Sub-DAGs Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html


Dynamically Run N Nodes
• Useful for when the number of nodes is not known at submission time.

JOB A job.sub
SUBDAG EXTERNAL B inner.dag
JOB C job.sub

JOB B1 job.sub
JOB B2 job.sub
JOB B3 job.sub
…
JOB B99 job.sub
JOB B100 job.sub

inner.dag

parent.dag
A

B

C

B1 B2 B3

B4 B5 B6

B7 B8 BN

inner.dag

18



SPLICE
• Splices have their nodes merged into the 

parent DAG
• Allows easy reusability
• Low strain on the Access Point (AP)
• All splice files must exist at submit time
• Pre and Post scripts cannot run on 

splices as a whole
• Splices can not use the RETRY 

capability

A

C

SPLICE X

X+A X+B

X+C

X+EX+D

JOB A job.sub
SPLICE X cross.dag
JOB C job.sub

PARENT A CHILD X
PARENT X CHILD C

sample.dag

19DAGMan Splicing Documentation

https://htcondor.readthedocs.io/en/latest/automated-workflows/dagman-using-other-dags.html


Questions?

20


