
Improving CMS CPU Efficiency
through Strategic Pilot Overloading

M. Mascheroni, A. Pérez-Calero Yzquierdo, F. Von
Cube, V. Zokaite, H. Kim, F. Khan

for the CMS Collaboration

The CMS experiment at CERN

● High Energy Physics general-purpose experiment
recording proton-proton collisions at the LHC at CERN

2

● Experimental data is stored, distributed,
reconstructed, and analyzed, comparing
to simulated data (Monte-Carlo)

○ Hundreds of PBs per year

The computing landscape - the WLCG

● Data traditionally analyzed using Worldwide LHC Computing Grid (WLCG)
resources

○ Global collaboration of around 170 computing centers
○ Access based on dedicated resources (pledges)
○ Over 1M CPU cores and 2 EB in data storage

3

The CMS Submission Infrastructure Group

4

● Part of CMS Offline and Computing in charge of:
○ Organizing HTCSS and GlideinWMS operations in

CMS, in particular of the Global Pool, an infrastructure
where reconstruction, simulation, and analysis of
physics data takes place

○ Communicate CMS priorities to the development
teams of GlideinWMS and Condor

● In practice:
○ We operate a set of federated pool of resources

distributed over 70 Grid sites, plus non-Grid
resources

○ Join them into a Global Pool of resources
managed by HTCondor

Central
Manager

Access
Point

GlideinWMS
Frontend

Pilot (aka Glidein)

Execute
Point

GlideinWMS
Factory

5

The CMS SI: federated HTCondor pools

Types of access point

Types of execution point

The CMS SI: multicore pilot model

6

CMS Operates in a late-binding
model

Acquiring resources for the CMS
SI:

● Resources mainly acquired via 8-core
pilot jobs submitted to WLCG sites’
CEs

● Flexibility to use non-standard
slots, e.g.: high-mem, whole nodes,
etc 8-core pilots

10-core pilots

450k cores

A typical CMS “pilot job”: 8-core 48h pilot job executing
multiple payloads

7

V
a
l
i
d
a
t
i
o
n

Walltime

4 Core CRAB
job

Single core CRAB
Single core

Single core CRAB job

CPU Time
Legend

WLCG Efficiency: “CPU Time / Walltime”

4 Core WMAgent job
(90% efficient) (50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(85% efficient)

Single core WMAgent job
 job

CRAB job

8

V
a
l
i
d
a
t
i
o
n

4 Core CRAB

Single core CRAB
Single core

4 Core WMAgent job
(90% efficient)

Single core CRAB job

(50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(85% efficient)

Single core WMAgent job
 job

CRAB job

● Efficiency results observed and reported by our sites to the EGI accounting portal include
scheduling AND payload Inefficiencies

● They can be factored and measured independently

● Scheduling efficiency typically >95% level for stable sites (T1s and big T2s)

A typical CMS “job”: 8-core 48h pilot job executing multiple
payloads

Sources of Payload Inefficiencies

● Bootstrapping and staging
● I/O-bound jobs

○ Eaither heavy I/O jobs or jobs that use remote reads
● User code (CRAB jobs)
● StepChain (vs TaskChain): Multiple executables linked together as a single payload job

○ Pro: less jobs to manage, reduce intermediate data storage and transfers. 10x faster turnaround.
○ Con: diverse resource needs leading to inefficiencies

● Non-standard resources or jobs
○ System optimized for 2GB per core of RAM and 8 hours of walltime

Valid reasons for inefficiencies, hard to reduce often.

Can we recover CPU cycles in some other way?

Strategy to recover unused CPU cycles:
overloading pilots

10

V
a
l
i
d
a
t
i
o
n

4 Core CRAB

Single core CRAB
Single core

4 Core WMAgent job
(90% efficient)

Single core CRAB job

(50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(75% efficient)

Single core WMAgent job
 job

CRAB job

Single core job Single core job
Single core jobSingle core job

8+2
cores

Idea: Re-definition of the efficiency problem:
● Improve CPU utilization efficiency by pushing more workload into the same pilot envelope

● Modify pilots so that they accept more payload jobs into the same resources
● Trivial to implement and test from CMS Submission Infrastructure side

Principle: we want to recover unused CPU, not gain opportunistic cycles!
● Moderate overloading: add 25% extra CPU cores and memory to the nominal values of our standard

8-core pilot. Provides 2 extra cores, e.g. available to run additional CRAB or production payload

Available memory for overloading pilots

Do we have enough memory available in the pilots to make moderate overloading work? Analyse memory use for
fully used pilots at Tier-1s (e.g. 30 day plots):

● Typically, at least 20% of the partitionable slot memory remains unscheduled for fully occupied pilots
● Then, for dynamic slots running the payload jobs, the average memory utilization is typically below 50%

There is no memory constraint for a moderate overloading strategy (e.g. +25%)

11

https://monit-grafana.cern.ch/d/StuCibYiz/cms-submission-infrastructure-slots-monitor?orgId=11&var-Pool=All&var-Site=T1_DE_KIT&var-Site=T1_ES_PIC&var-Site=T1_FR_CCIN2P3&var-Site=T1_IT_CNAF&var-Site=T1_RU_JINR&var-Site=T1_UK_RAL&var-Site=T1_US_FNAL&var-Subsite=All&var-Entry=All&from=now-30d&to=now-15m&viewPanel=20
https://monit-grafana.cern.ch/d/StuCibYiz/cms-submission-infrastructure-slots-monitor?orgId=11&var-Pool=All&var-Site=T1_DE_KIT&var-Site=T1_ES_PIC&var-Site=T1_FR_CCIN2P3&var-Site=T1_IT_CNAF&var-Site=T1_RU_JINR&var-Site=T1_UK_RAL&var-Site=T1_US_FNAL&var-Subsite=All&var-Entry=All&from=now-30d&to=now-15m&viewPanel=22

Overloading: whole node slot real example

128 cores pilot at FNAL overloaded to 160 cores 12

128 cores

Some results

13

Preliminary results in 2023: promising!

14

Link

Link

Link

T1_ES_PIC T2_ES_CIEMAT T2_DE_DESY

https://accounting.egi.eu/egi/site/PIC/cpueff/SubmitHost/DATE/2023/1/2023/9/custom-cms/onlyinfrajobs/
https://accounting.egi.eu/egi/site/CIEMAT-LCG2/cpueff/SubmitHost/DATE/2023/1/2023/9/custom-cms/onlyinfrajobs/
https://accounting.egi.eu/egi/site/DESY-HH/cpueff/SubmitHost/DATE/2023/1/2023/9/custom-cms/onlyinfrajobs/

Overloading pilots expansion

● After promising results at a few sites in 2023, CMS decided to enable overloading at
more resource providers starting in January 2024:

○ All Tier-1 sites (*)
○ A set of good Tier-2s (average scheduling efficiency already at 95%)

Still keep ~50% unchanged for each site in order to compare results

15

CPU cores for
jobs running on
overloaded pilots
for last month.
Global pool only.

Overloaded cores
Normal cores

Efficiency Improvements

● From the pilot logs, total walltime and used
CPU time can be extracted. We can thus
calculate the CPU efficiency as measured by
the resource providers and reported to EGI

● Efficiencies based on pilot logs executed over
last 3 months can be used to compare
overloaded vs non-overloaded pilots

● Significant improvement of CPU utilization
efficiency when allowing overloaded pilots

16

Job Failures Comparison

Absolute number of job failures in the last week grouped by job type

17

Failures for normal jobs Failures for overloaded jobs

No impact in terms of job failures

Impact on event rates

18

Event throughput study

While it seems clear we are recovering CPU cycles, need to evaluate the impact on
event processing rate. We have analysed this for diverse CMS workload types, for
diverse sites, then compared evts/s for jobs running on overloaded vs.
non-overloaded pilots.

Results: while average event rate appears to be lower for the overloaded pilots at a
number of sites, in fact we observe the overloading effect to be smaller compared to
the variability between jobs of the same workflow and between sites

Event Rates comparison (I)

● Compared event rates for all workflows in April, May and June, classifying jobs by execution site, workflow
type, etc.

● As a first example, notice this full StepChain simulation workflow with the highest number of jobs (~450k
jobs in total)

○ Results: event processing rates present high variability, ranging from 0,005 to 0,014 evts/s
○ Overloading effect on event throughput smaller than dispersion between jobs at the same site and

across sites

20

Event Rates comparison (II)

● Data processing workflow with most jobs in the last three months
○ ~20k jobs in total
○ Event rates range from 0,04 to 0,1

21

Conclusions

● CMS has been operating the biggest condor pool in the world since ten years
○ Average of 350k cores in the Global Pool and 450k in total.
○ From 1 to 10 millions of jobs daily

● Moderately overloading of our pilots allows CMS to recover between 5% to 20%
of idle CPU cycles

○ Extra 30k cores (re)gained using this strategy
● No impact observed from the site perspective on job error rates, CPU or memory

(ab)use, etc.
● No significant impact on event processing rate has been observed

○ Higher variability between jobs of the same workflow and between sites than
an overloading true/false effect

Many thanks for the HTCSS team for all the help and the fruitful collaborations over
the years!

Backup Slides

23

Event rate distribution for Wisconsin

● 958 tasks run at
T2_US_Wisconsin in the past
three months

● Taking event rate average of:
overloaded jobs over normal
jobs, and plotting distribution

● 100 bins between 0 and 2

24

Event rate penalty introduced by overloaded jobs is around 2%

CPU efficiency and event penalty. Last 3 months

25

● In most cases efficiency increase benefit
is higher than event rate penalty.

● Deviating results for some sites, need to
be investigated

26

V
a
l
i
d
a
t
i
o
n

4 Core CRAB

Single core CRAB
Single core

4 Core WMAgent job
(90% efficient)

Single core CRAB job

(50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(85% efficient)

Single core WMAgent job
 job

CRAB job

Scheduling Inefficiencies

Jobs can be
negotiated Draining starts

A typical CMS “job”: 8-core 48h pilot job executing multiple
payloads

27

V
a
l
i
d
a
t
i
o
n

4 Core CRAB

Single core CRAB
Single core

4 Core WMAgent job
(90% efficient)

Single core CRAB job

(50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(85% efficient)

Single core WMAgent job
 job

CRAB job

Payload Inefficiencies

(Uses payload walltime as denominator)

A typical CMS “job”: 8-core 48h pilot job executing multiple
payloads

28

V
a
l
i
d
a
t
i
o
n

4 Core CRAB

Single core CRAB
Single core

4 Core WMAgent job
(90% efficient)

Single core CRAB job

(50% efficient)

4 Core WMAgent job
(95% efficient)

4 Core WMAgent job
(85% efficient)

Single core WMAgent job
 job

CRAB job

● Efficiency results observed and reported by our sites to the EGI accounting portal include
scheduling AND payload Inefficiencies

● They can be factored and measured independently

A typical CMS “job”: 8-core 48h pilot job executing multiple
payloads

