
Pelican under the hood: how 
the data federation works



If only I had a whiteboard…

• … I could talk and draw for hours about how the system works.
• So today I’ll pick three topics:
• How we use HTTP under the hood in the client, cache, and origin.
• How we “authorize” an origin to the director.
• Authorizing the origin to the object store.



HTTP, HTTP Everywhere



Pelican uses HTTP

• Pelican uses HTTP to move bytes*.
• We hew to using standard HTTP 

where possible.  While we prefer 
you use the Pelican client, any 
HTTP client suffices.
• Downloading an object? => GET
• Uploading an object? => PUT
• Want to know if the object exists? => 

HEAD

* Except it where it doesn’t: legacy services still transitioning.



Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*



Example director response
< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-
cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; 
pri=2; depth=3,...
< location: https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-
url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-
depth=3, strategy=OAuth2
< content-length: 109



Example director response
< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-
cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; 
pri=2; depth=3,...
< location: https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-
url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-
depth=3, strategy=OAuth2
< content-length: 109



Example director response
< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-
cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; 
pri=2; depth=3,...
< location: https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-
url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-
depth=3, strategy=OAuth2
< content-length: 109



Director Response

• If you speak “plain HTTP”, you only understand the “blue” headers 
and will successfully access the data.
• If you are the “Pelican client”, you can interpret the “red” headers:
• X-pelican-authorization: What token the client needs to successfully access 

the data.
• X-pelican-namespace: What namespace the object is in.  Informs client how 

to reuse the director response; no need to return to director for each object.
• X-pelican-token-generation: If the client doesn’t have a usable token, how to 

receive one.
• Link: An ordered list of potential endpoints (caches) that can serve the 

requests.  Actually, a standard RFC header (RFC 6249).



Cache access

Cache

Client

HTTP GET

Director

Origin



Cache access

Cache

Client

HTTP GET

Director

OriginHTTP 307
Location: cache



Cache access

Cache

Client

HTTP GET

Director

OriginHTTP 307
Location: cache

HTTP GET



Cache access – hit!

Cache

Client

HTTP GET

Director

OriginHTTP 307
Location: cache

HTTP GET

HTTP 200



Cache access – miss

Cache

Client

Director

Origin

HTTP GET

HTTP GET



Cache access – miss

Cache

Client

Director

Origin

HTTP GET

HTTP GET HTTP 307
Location: origin



Cache access – miss

Cache

Client

Director

Origin

HTTP GET

HTTP GET HTTP 307
Location: origin

HTTP GET



Cache access – miss

Cache

Client

Director

Origin

HTTP GET

HTTP 200

HTTP GET HTTP 307
Location: origin

HTTP GET



Cache access – miss

Cache

Client

Director

Origin

HTTP GET

HTTP 200

HTTP GET HTTP 307
Location: origin

HTTP GET

HTTP 200



Some notes

• I drew the pictures as if the director blindly redirects the cache to an 
origin.
• In reality, there may be multiple origins for the namespace.  The director may 

perform a HEAD request to each potential origin and decide the “best” one 
for a request based on the response.

• What happens if the object is 1PB?
• We don’t want a client request to wait until 1PB is moved to the cache.
• The cache requests smaller, 64KB chunks in parallel.
• The response to the “client” starts as soon as the first chunk is returned.



A slide for the XRootD people out there…

Cache Container

Pelican process

XRootD process

HTTP

Cache

Storage

Client
Pelican 
Plugin

Origin Container

Pelican process

XRootD process

HTTP

Backend 
O

SS

Object 
StoreHTTP GET

Note: pelican plugin is 
a modest wrapper 
around libcurl.



How do you trust an origin?



Don’t let just anyone connect to OSDF!

• If an origin connects to OSDF 
advertising it serves the /ligo 
namespace, how do we 
know that’s an OK origin to 
redirect users to?
• I.e., how do you weed out 

“fake” origins?

• Answer: The Registry!

Registry Director

Origin



Don’t let just anyone connect to OSDF!

• If an origin connects to OSDF 
advertising it serves the /ligo 
namespace, how do we 
know that’s an OK origin to 
redirect users to?
• I.e., how do you weed out 

“fake” origins?

• Answer: The Registry!

Registry Director

Origin

Please register 
/ligo with public 

key XYZ

XYZ



Don’t let just anyone connect to OSDF!

• If an origin connects to OSDF 
advertising it serves the /ligo 
namespace, how do we 
know that’s an OK origin to 
redirect users to?
• I.e., how do you weed out 

“fake” origins?

• Answer: The Registry!

Registry Director

Origin

Please register 
/ligo with public 

key XYZ

Is this 
request 
OK?

???
XYZ



Don’t let just anyone connect to OSDF!

• If an origin connects to OSDF 
advertising it serves the /ligo 
namespace, how do we 
know that’s an OK origin to 
redirect users to?
• I.e., how do you weed out 

“fake” origins?

• Answer: The Registry!

Registry Director

Origin

Please register 
/ligo with public 

key XYZ

/ligo<->XYZ

OK!

XYZ



Don’t let just anyone connect to OSDF!

• The origin will advertise its 
services to the Director.
• This advertisement contains 

information about how to 
contact the origin, what 
namespaces it supports, what 
token issuers it supports, the 
operations it is willing to 
perform (read/write).

• Sounds like a HTCondor 
collector, no?

Registry Director

Origin

/ligo<->XYZ

POST /ligo
Authorization: <TOKEN>
<advertisement>

XYZ



Don’t let just anyone connect to OSDF!

• What’s in the token?
• Standard JWT headers
• Capability for “advertise”
• Issuer name
• Public key name (“XYZ”)

Registry Director

Origin

/ligo<->XYZ

POST /ligo
Authorization: <TOKEN>
<advertisement>

XYZ



Don’t let just anyone connect to OSDF!

• What’s in the token?
• Standard JWT headers
• Capability for “advertise”
• Issuer name
• Public key name (“XYZ”)

• Director looks up the public 
keys allowed for the /ligo 
namespace.

Registry Director

Origin

/ligo<->XYZ

POST /ligo
…

XYZ

GET /ligo

XYZ



Don’t let just anyone connect to OSDF!

• What’s in the token?
• Standard JWT headers
• Capability for “advertise”
• Issuer name
• Public key name (“XYZ”)

• Director looks up the public 
keys allowed for the /ligo 
namespace.
• Registry responds with the 

information in the DB.

Registry Director

Origin

/ligo<->XYZ

POST /ligo
…

XYZ

GET /ligo

XYZ

OK!



Origin to the Object Store



Authorization and proxying
Origin Container

Pelican process

XRootD process

HTTP

Backend 
O

SS

Object 
Store



Authorization and proxying
Origin Container

Pelican process

XRootD process

HTTP

Backend 
O

SS

Object 
StoreAuthz 

Check

libscitokens-
cpp

All requests are explicitly 
authorized using the 
origin’s policy configuration



Authorization and proxying
Origin Container

Pelican process

XRootD process

HTTP

Backend 
O

SS

Object 
StoreAuthz 

Check

libscitokens-
cpp

Once the request is authorized, 
then there’s a separate 
decision to make – how should 
the storage plugin interact with 
the object store?



Authorization: POSIX (simple)
Origin Container

Pelican process

XRootD process

HTTP

M
ultiuser 
O

SS

POSIX 
filesystemAuthz 

Check

libscitokens-
cpp

Open/read



Authorization: POSIX (“multiuser”)
Origin Container

Pelican process

XRootD process

HTTP

M
ultiuser 
O

SS

POSIX 
filesystemAuthz 

Check

libscitokens-
cpp

setuid

The storage plugin can 
decide which “credential” 
(in POSIX, the UID), it 
presents to the filesystem

Open/read



Origin <-> object store

• The storage plugin translates the storage operation(s) into a sequence of 
commands the object store understands.
• This might be conceptually simple.  For POSIX, this is “open” followed by many 

“read” followed by “close” on a mounted filesystem.
• For HTTP-esque object stores (including S3), it the translation may be a sequence of 

GETs or PUTs.
• The plugin assumes that once it is invoked, the request is authorized – and 

the remaining decision is “how do I interact with the object store”.
• It may decide to use the same credentials for each request.
• It may select a credential to use based on information derived from the token.
• It may select a credential based on the bucket the object is read from.
• It never runs its own authorization logic.



Authorization: S3
Origin Container

Pelican process

XRootD process

HTTP

S3 O
SS

POSIX 
filesystemAuthz 

Check

libscitokens-
cpp

GET /foo
Authorization: ….

For S3, based on the bucket 
name, the plugin decides 
which S3 credential to read 
from disk.

Token File



🌪What a whirlwind tour!

• As when you look “under the hood” of a car, it’ll take awhile to 
understand each component.
• I hope this provides you a feel for some of our approaches.
• The rest of the session looks at technical details from other angles.

• Pelican is <1 year old – this is the first time trying to explain the 
ecosystem to this crowd.

What else would you like to learn about?



Questions?
This project is supported by the National Science Foundation under Cooperative 
Agreements OAC-2331480. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation.


