
Pelican under the hood: how 
the data federation works



If only I had a whiteboard…

• … I could talk and draw for hours about how the system works.
• So today I’ll pick three topics:
• How we use HTTP under the hood in the client, cache, and origin.
• How we “authorize” an origin to the director.
• Authorizing the origin to the object store.



HTTP, HTTP Everywhere



Pelican uses HTTP

• Pelican uses HTTP to move bytes*.
• We hew to using standard HTTP 

where possible.  While we prefer 
you use the Pelican client, any 
HTTP client suffices.
• Downloading an object? => GET
• Uploading an object? => PUT
• Want to know if the object exists? => 

HEAD

* Except it where it doesn’t: legacy services still transitioning.



Example request from client to director

> GET /chtc/staging/bbockelm/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*



Example director response
< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; pri=1; 
depth=3, <https://stash-
cache.osg.chtc.io:8443/chtc/staging/bbockelm/testfile>; rel="duplicate"; 
pri=2; depth=3,...
< location: https://osdf-uw-cache.svc.osg-
htc.org:8443/chtc/staging/bbockelm/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true, collections-
url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-
depth=3, strategy=OAuth2
< content-length: 109
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Director Response

• If you speak “plain HTTP”, you only understand the “blue” headers 
and will successfully access the data.
• If you are the “Pelican client”, you can interpret the “red” headers:
• X-pelican-authorization: What token the client needs to successfully access 

the data.
• X-pelican-namespace: What namespace the object is in.  Informs client how 

to reuse the director response; no need to return to director for each object.
• X-pelican-token-generation: If the client doesn’t have a usable token, how to 

receive one.
• Link: An ordered list of potential endpoints (caches) that can serve the 

requests.  Actually, a standard RFC header (RFC 6249).
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Cache access – hit!
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Some notes

• I drew the pictures as if the director blindly redirects the cache to an 
origin.
• In reality, there may be multiple origins for the namespace.  The director may 

perform a HEAD request to each potential origin and decide the “best” one 
for a request based on the response.

• What happens if the object is 1PB?
• We don’t want a client request to wait until 1PB is moved to the cache.
• The cache requests smaller, 64KB chunks in parallel.
• The response to the “client” starts as soon as the first chunk is returned.



A slide for the XRootD people out there…
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Note: pelican plugin is 
a modest wrapper 
around libcurl.



How do you trust an origin?



Don’t let just anyone connect to OSDF!

• If an origin connects to OSDF 
advertising it serves the /ligo 
namespace, how do we 
know that’s an OK origin to 
redirect users to?
• I.e., how do you weed out 

“fake” origins?

• Answer: The Registry!

Registry Director

Origin
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Don’t let just anyone connect to OSDF!

• The origin will advertise its 
services to the Director.
• This advertisement contains 

information about how to 
contact the origin, what 
namespaces it supports, what 
token issuers it supports, the 
operations it is willing to 
perform (read/write).

• Sounds like a HTCondor 
collector, no?
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Don’t let just anyone connect to OSDF!

• What’s in the token?
• Standard JWT headers
• Capability for “advertise”
• Issuer name
• Public key name (“XYZ”)
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Don’t let just anyone connect to OSDF!

• What’s in the token?
• Standard JWT headers
• Capability for “advertise”
• Issuer name
• Public key name (“XYZ”)

• Director looks up the public 
keys allowed for the /ligo 
namespace.
• Registry responds with the 

information in the DB.
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Origin to the Object Store
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then there’s a separate 
decision to make – how should 
the storage plugin interact with 
the object store?
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Origin <-> object store

• The storage plugin translates the storage operation(s) into a sequence of 
commands the object store understands.
• This might be conceptually simple.  For POSIX, this is “open” followed by many 

“read” followed by “close” on a mounted filesystem.
• For HTTP-esque object stores (including S3), it the translation may be a sequence of 

GETs or PUTs.
• The plugin assumes that once it is invoked, the request is authorized – and 

the remaining decision is “how do I interact with the object store”.
• It may decide to use the same credentials for each request.
• It may select a credential to use based on information derived from the token.
• It may select a credential based on the bucket the object is read from.
• It never runs its own authorization logic.
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🌪What a whirlwind tour!

• As when you look “under the hood” of a car, it’ll take awhile to 
understand each component.
• I hope this provides you a feel for some of our approaches.
• The rest of the session looks at technical details from other angles.

• Pelican is <1 year old – this is the first time trying to explain the 
ecosystem to this crowd.

What else would you like to learn about?



Questions?
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