
ACCESS Pegasus
A hosted workflow system for ACCESS users,
bringing their own capacity

Mats Rynge
University of Southern California
Information Sciences Institute

Supported by NSF #2138286

Pegasus Workflow Management
System

Scientific Workflows

• An abstraction to express ensemble of complex computational
operations

- Eg: retrieving data from remote storage services, executing applications, and
transferring data products to designated storage sites

• A workflow is represented as a directed acyclic graph (DAG)

- Nodes: tasks or jobs to be executed

- Edges: depend between the tasks

• Have a monolithic application/experiment?

- Find the inherent DAG structure in your application to convert into a workflow

Pegasus Workflow Management
System

Pegasus
in practice

▶ Laser Interferometer Gravitational Wave Observatory (LIGO) develops
large scale analysis pipelines used for gravitational wave detection.

▶ Southern California Earthquake Center (SCEC) CyberShake project
generates hazard maps using hierarchical workflows .

▶ Oak Ridge National Lab (ORNL) conducted studies on tRNA and
nanodiamonds to improve drug delivery design principles.

LIGO
observation
of colliding
black holes

Hazard map indicating maximum amount of shaking at a
particular geographic location generated from SCEC’s

CyberShake Pegasus workflow

Visualization of
water on

nanodiamond
spheres from ORNL

End to End
Workflow

Management
& Execution

▶ Develop portable scientific workflows in Python, Java, and R
▶ Compile workflows to be run on heterogeneous resources
▶ Monitor and debug workflow execution via CLI and web-based tools
▶ Recover from failures with built-in fault tolerance mechanisms
▶ Regular release schedule incorporating latest research and development

Planner

Monitoring & Provenance

Pegasus
WMS

 > Cloud Resources
 > Open Science Grid
 > HPC Systems
> HTCondor Pools

Engine

Scheduler

Submit Node Compute Resources

Job
Queu

e
jN
j2
j1

Key Pegasus Concepts
Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine +

HTCondor scheduler/broker
▪ Pegasus maps workflows to infrastructure
▪ DAGMan manages dependencies and reliability
▪ HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs
▪ Nodes: jobs, edges: dependencies
▪ No while loops, no conditional branches
▪ Jobs are standalone executables

Planning occurs ahead of execution

Planning converts an abstract workflow into a concrete, executable workflow
▪ Planner is like a compiler

5

Input Workflow Specification Output Workflow

Portable Description
Users do not worry about low level execution details

Logical Filename (LFN)
platform independent (abstraction)

Transformation
Executables (or programs)
platform independentA

BS
TR

AC
T

W
O

RK
FL

O
W

EXECUTA
BLE W

O
RKFLO

W

Stage-in Job
Transfers the workflow input data

Cleanup Job
Removes unused data

Stage-out Job
Stage-out generated output data

Registration Job
Registers the workflow output data

6

YAML formatted

Pegasus provides APIs
to generate the Abstract Workflow

Abstract
 Workflow

YAML Formatted

7

So, what other information does Pegasus need?

Transformation Catalog

Describes all of the executables
(called “transformations”)
used by the workflow

Site Catalog

Describes the sites where
The workflow jobs are to be executed

Replica Catalog

Describes all of the input data stored
on external servers

8

Performance.
Why not improve

it?

Clustered Job
Groups small jobs together

to improve performance

Task
Small granularity

9

Data Reuse prune jobs if output data already exists

10

data already
available

Jobs which output data is
already available are pruned
from the DAG

data reuseworkflow
reduction

data also
available

data reuse

Pegasus-transfer
Pegasus’ internal data transfer tool with support for a number of different protocols

Directory creation, file removal
▪ If protocol can support it, also used for cleanup

Two stage transfers
▪ e.g., SCP to S3 = SCP to local file, local file to S3

Parallel transfers

Automatic retries

Credential management
▪ Uses the appropriate credential for each site and each protocol

(even 3rd party transfers)

HTTP
webdav
SCP
GridFTP
Globus Online
iRods
Amazon S3
Google Cloud Storage
SRM
FDT
OSDF / stashcp
Rucio
cp
ln -s

11

Automatic Integrity Checking

12

Pegasus performs integrity
checksums on input files right before
a job starts on the remote node.

▶ For raw inputs, checksums specified
in the input replica catalog along
with file locations

▶ All intermediate and output files
checksums are generated and
tracked within the system.

▶ Support for sha256 checksums

Job failure is triggered
if checksums fail

J
Directory
Setup Job

Data
Stagein Job

Pegasus Lite
Compute Job

Data
Stageout Job

Directory
Cleanup Job

Worker Node
(WN)

LEGEND

Check
Integrity Job

Checksum
Generation Job

Task flow +
Checksums

Data Flow

Compute Site n

WN WN

T2
J2

Pegasus Lite
Instance

SUBMIT HOST

F.in

F.int

T2

T1

F.out

Compute Site 1

WN WN

T1

J1

Pegasus Lite
Instance

F.in

F.int

F.out

Input Data Site

Staging Site

Output Data Site

WN

And if a job fails?

helps with transient failures
set number of retries per job
and run

detects non-zero exit code output
parsing for success or failure

message exceeded timeout do not
produced expected output files

job generates checkpoint files
staging of checkpoint files is

automatic on restarts

workflow can be restarted from
checkpoint file recover from
failures with minimal loss

13

Job RetryPostscript

Rescue DAGsCheckpoint Files

Success Stories

Southern California
Earthquake

Center’s
CyberShake

15

CPU jobs
(Mesh generation, seismogram synthesis)

1,094,000 node-hours

Builders ask seismologists:
What will the peak ground motion be at my new
building in the next 50 years?

GPU jobs:
439,000 node-hours

AWP-ODC finite-difference code
5 billion points per volume, 23,000 timesteps

200 GPUs for 1 hour

Titan:
421,000 CPU node-hours, 110,000 GPU node-hours

Blue Waters:
673,000 CPU node-hours, 329,000 GPU node-hours

Seismologists answer this question
using Probabilistic Seismic Hazard Analysis (PSHA)

Titan, Blue Waters

Configuration
Files

(2 GB)

Velocity
Mesh

(120 GB)

Pre-processing

Mesh Generation

SGT Y
Simulation

SGT X
Simulation

Serial,
1 core x 0.1 hr

Parallel,
3840 cores x 0.4 hr

Parallel,
800 GPUs x 1hr

Seismograms & intensity measures (8TB)

Post-processing Parallel,
3712 cores x 11 hr

Data Product
Generation

SCEC/USC

Blue Waters Strain Green Tensors (1.5 TB)

Each Workflow Has
420,000 Tasks4 Models286 Sites

XENONnT - Dark Matter Search

Monte Carlo simulations and the main
processing pipeline.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 4000 0 0 4000 267 4267
Jobs 4484 0 0 4484 267 4751
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 5 hrs, 2 mins
Cumulative job wall time : 136 days, 9 hrs
Cumulative job wall time as seen from submit side : 141 days, 16 hrs
Cumulative job badput wall time : 1 day, 2 hrs
Cumulative job badput wall time as seen from submit side : 4 days, 20 hrs

▪ Workflows execute across
Open Science Grid (OSG) &
European Grid Infrastructure (EGI)

▪ Rucio for data management

▪ MongoDB instance to track science
runs and data products.

16

Two Workflows

 Pull simulated image
from CyVerse Data Store

 Push synthetic
observation data
back to CyVerse

Model interstellar scattering

17

Event Horizon Telescope
Bringing Black Holes into Focus

8 telescopes: 5 PB of data 60 simulations: 35 TB data

First images of black hole at the center of the M87 galaxy

Improve constraints on Einstein's theory
of general relativity by 500x

Pegasus-SYMBA Pipeline

1

2

6

Synthetic interferometry data3

Model observation systematics4

Calibrate synthetic observation5

480,000 jobs - 2,600,000 core hours

#15 in all OSG projects in last 6 months

#2 in all OSG astronomy projects in the last 6 months

Physically accurate synthetic observation data from simulations are keys
to develop calibration and imaging algorithms, as well as comparing the

observation with theory and interpreting the results.

ACCESS Pegasus

ACCESS Researcher Support Services

• Enable innovative research through
equitable and scalable support

• Four tiers of support

• Tools, growing knowledge base

• Match-making with experts

• Student engagement

• Engagement from community

• CSSN incentives

19

https://support.access-ci.org

https://support.access-ci.org/

20

ACCESS Support Strategy
Powerful Tools
& Workflows

Reduce the need for support by
simplifying access to resources

Schedule jobs, manage files, create
remote visualizations and use a host
of other valuable services.

Simplify complex data workflows on
distributed computing resources,
such as clusters, grids, and clouds.

AUTOMATED WORKFLOWS INTEGRATED WEB-BASED INTERFACES

ACCESS Pegasus

21

Leveraging Open
OnDemand and
Jupyter Notebooks

https://pegasus.access-ci.org/

ACCESS Pegasus

22

Leveraging Open
OnDemand and
Jupyter Notebooks

Example Workflows
In addition to tutorial workflows, a set of example workflows are automatically installed into each user account - easy

to explore, execute and modify!

• Artificial Intelligence

• Lung Segmentation

• Mask Detection

• Orca Sound

• LLM + RAG

• Astronomy

• Montage

• Bioinformatics

• Alphafold

• Rosetta

• VarientCalling

23

Bring Your Own
Capacity

• ACCESS CI consists of allocatable
resources

• Motivations
• Increased / known capacity
• GPUs
• Parallel filesystems, I/O
• Clouds / configurable

• ACCESS Pegasus connects to both
shared and BYOC resources

25

Helps users with an ACCESS account but no allocation try the
capability

Small amount of compute resources attached to pegasus.access-ci.org

• CPU: 32 cores, 128 GB RAM, 256 GB disk
• GPU: 32 cores, 2 GPUs, 128 GB RAM, 256 GB disk
• hosted on IU Jetstream2, provisioned when needed

Always available, no allocation needed

Can be used for quick turnaround jobs

• workflow development and debugging
• tutorials (not all users might have an allocation at the time of the tutorial)

Shared Capacity - TestPool

26

BYOC - Cloud

• IU JetStream2

• Provided VM image

• Users have to add
pegasus.access-ci.org username
and token in the cloud-init yaml

• Instances self-terminates when
there are no more jobs

BYOC - HTCondor Annex

• Bring your own HPC allocation

• Semi-managed, submits glideins via SSH.

• A glidein can run multiple user jobs - it stays active until no more user jobs are
available or until end of life has been reached, whichever comes first.

• A glidein is partitionable - job slots will dynamically be created based on the resource
requirements in the user jobs. This means you can fit multiple user jobs on a compute
node at the same time.

• A glidein will only run jobs for the user who started it.

• Documentation: https://htcondor.org/experimental/ospool/byoc/

$ htcondor annex create --nodes 1 --lifetime 7200 --project sta230005p \
 --gpu-type v100-16 $USER GPU@bridges2

 delta
 cpu
 cpu-interactive
 gpuA100x4
 gpuA100x4-preempt
 gpuA100x8
 gpuA40x4
 gpuA40x4-preempt

 stampede2
 normal
 development
 skx-normal

 expanse
 compute
 gpu
 shared
 gpu-shared

 anvil
 wholenode
 wide
 shared
 gpu
 gpu-debug

 bridges2
 RM
 RM-512
 RM-shared
 EM
 GPU
 GPU-shared

 path-facility
 cpu

https://htcondor.org/experimental/ospool/byoc/

Shared or BYOC - OSPool

• pegasus.access-ci.org is an OSPool access point, via flocking

• Jobs have to set +ProjectName, which can be an ACCESS allocation
(if the user have one), or any registered OSG project name

• No OSDF origin
• Can use the ACCESS allocated Open Storage Network (OSN), which is a S3

compatible object store

Example AI Workflow - LLM + RAG
LLM RAG (Large Language Model Retrieval-Augmented Generation) is a technique that enhances large language models by incorporating
information retrieval mechanisms. It involves retrieving relevant information from a database or document corpus and combining it with
the original query to provide additional context. This augmented input is then processed by the large language model to generate more
accurate and contextually relevant responses. LLM RAG offers benefits such as improved accuracy, access to up-to-date information, and
better contextual understanding, making it useful for applications like question answering, summarization, and conversational AI.

30

● Container includes LLM

● Inputs: IU Jetstream2 documentation PDF

● Same query twice, once without RAG and one with
RAG

● “Please provide a summary of the GPU capabilities
of the IU Jetstream2 system. Include the instance
flavors, and any details about the GPUs.”

● Can execute on GPUS from any of the capacity
providers: TestPool, Cloud, HTCondor Annex, OSPool

Summary without RAG:

The IU Jetstream2 system is a high-performance computing resource provided by Indiana University
for research purposes. Regarding its GPU capabilities, Jetstream2 offers several instance flavors that
include GPUs:

1. `gpu96`: This flavor provides 4 NVIDIA V100 GPUs (with 32GB of memory each) and 128GB of RAM
on the host CPU node.
2. `gpu60`: This flavor offers 2 NVIDIA V100 GPUs (each with 32GB of memory) and 64GB of RAM on
the host CPU node.
…

Summary with RAG:

The IU Jetstream2 system has 90 GPU-enabled nodes with four NVIDIA A100 GPUs each. These are
divided using NVIDIA virtual GPU (vGPU) to allow allocations to utilize from 1/5th of a GPU to an
entire GPU in instances, facilitating use for educational and research workloads requiring varying
amounts of GPU processing power.

The Jetstream2 system offers several GPU instance flavors: g3.small, g3.medium, g3.large, and g3.xl.
Here's a summary of their specifications:

- g3.small: 4 vCPUs, 15 GB RAM, 60 GB local storage, 20% GPU compute, 20 GB GPU RAM
- g3.medium: 8 vCPUs, 30 GB RAM, 60 GB local storage, 25% GPU compute, 10 GB GPU RAM
- g3.large: 16 vCPUs, 60 GB RAM, 60 GB local storage, 50% GPU compute, 20 GB GPU RAM
- g3.xl: 32 vCPUs, 125 GB RAM, 60 GB local storage, 100% GPU compute, 40 GB GPU RAM

Thank You!

https://support.access-ci.org/tools/pegasus

https://pegasus.isi.edu

https://support.access-ci.org/tools/pegasus
https://pegasus.isi.edu

Deployment Scenarios

Hosted

Larger infrastructure

projects might have

hosted instances,

commonly built on top

of either a static pool

or glideins. ACCESS

Pegasus described later

is an example.

HTCondor Pool

Workflow jobs are

submitted to an existing

HTCondor pool, and

handled directly by

HTCondor

Slurm (+HTCondor)

Common setup on

campus clusters. Pegasus

and HTCondor are

installed on a head node.

Workflow jobs are

submitted to HTCondor,

which translates the jobs

to Slurm jobs. Good

solution for parallel jobs.

Glideins / Pilot Jobs

Variation of HTCondor

Pool, but the capacity is

dynamically added to the

pool by submitting pilot

jobs. The pilot jobs will

become part of the pool,

and will start executing

workflow jobs.

AI Workflows - Orcasound
The Ocean Observatories Initiative (OOI), through a network of sensors, supports critical research in ocean science and marine life. Orcasound is a community driven
project that leverages hydrophone sensors deployed in three locations in the state of Washington (San Juan Island, Point Bush, and Port Townsend as shown in the figure
below) in order to study Orca whales in the Pacific Northwest region.

The workflow processes the hydrophone data of one or more sensors in batches for each timestamp, and converts them to a WAV format. Using the WAV output it creates
spectrogram images that are stored in the final output location. Furthermore, using the pretrained Orcasound model, the workflow scans the WAV files to identify potential
sounds produced by the orcas.

33

AI Workflows - Lung Segmentation

Precise detection of the borders of
organs and lesions in medical
images such as X-rays, CT, or MRI
scans is an essential step towards
correct diagnosis and treatment
planning. We implement a workflow
that employs supervised learning
techniques to locate lungs on X-ray
images. Lung instance
segmentation workflow uses Chest
X-ray for predicting lung masks
from the images using U-Net
model.

34

Automatic Integrity Checking in Pegasus

35

Pegasus performs integrity
checksums on input files right before
a job starts on the remote node.

▶ For raw inputs, checksums specified
in the input replica catalog along
with file locations

▶ All intermediate and output files
checksums are generated and
tracked within the system.

▶ Support for sha256 checksums

Job failure is triggered
if checksums fail

J
Directory
Setup Job

Data
Stagein Job

Pegasus Lite
Compute Job

Data
Stageout Job

Directory
Cleanup Job

Worker Node
(WN)

LEGEND

Check
Integrity Job

Checksum
Generation Job

Task flow +
Checksums

Data Flow

Compute Site n

WN WN

T2
J2

Pegasus Lite
Instance

SUBMIT HOST

F.in

F.int

T2

T1

F.out

Compute Site 1

WN WN

T1

J1

Pegasus Lite
Instance

F.in

F.int

F.out

Input Data Site

Staging Site

Output Data Site

WN

Pegasus Container Support

36

Users can refer to containers in the Transformation Catalog
with their executable preinstalled

Users can refer to a container they want to use – Pegasus
stages their executables and containers to the node
▪ Useful if you want to use a site recommended/standard

container image.
▪ Users are using generic image with executable staging.

▪ Users can specify an image buildfile for their jobs.
▪ Pegasus will build the Docker image as separate jobs in the

executable workflow, export them as a tar file and ship them
around

Future Plans

Containers Execution Model

Start container

Pull worker package
(if needed)

Stage out outputs

Container
Instance

Set job environment

Stage in inputs

Execute user application

Host OS

$PWD bind-mounted as/srv

Directory Setup

Pull image

Stop container

Cleanup

Data Management for Containers

Scaling up for larger workflows
▪ The image is pulled down as a tar file as part of data stage-in jobs in the workflow
▪ The exported tar file is then shipped with the workflow and made available to the jobs
▪ Pricing considerations. You are now charged if you exceed a certain rate of pulls from Hubs

Pegasus treats containers as input data dependency
▪ Staged to compute node if not present
▪ Docker or Singularity Hub URL’s
▪ Docker Image exported as a TAR file and available at a server, just like any other input dataset

37

Containers are data too!

Other Optimizations
▪ Symlink against existing images on shared file system such as CVMFS
▪ The exported tar file is then shipped with the workflow and made available to the jobs

