CCCCCCCCC

HTConddr

Advanced debugging with
eBPF and Linux tools

Background

New set of Linux "performance" tools
| don't see our community using them much
They can save hours! Days!

Not really an "HTCondor" talk

But real reason for this talk is ...

What do experts say?

"It depends”

But I'm not an expert here, so "l don't know"

A word on "Advanced"

Go Install these packages!
NOW!

S sudo yum install perf
S sudo yum install bpftrace bcc

S sudo apt-get install linux-perf

S sudo apt-get install bpfcc-
tools

Motivating example

Job takes 20 minutes to
run on researcher's laptop
Is taking 20+ hours to
run on our "fast" cluster

§ HTC computers —

WHY?

» N (also: running right now)

Initial investigation on EP

$ condor ssh to job 17012325
Welcome to slotl 2@e2550.chtc.wisc.edu!
Your condor Jjob is running with pid(s) 3437472.
S uptime
11:11:56 up 127 days load average: 183.74, 181.60, 181.89
[gthain@e2550 ~]1$ grep -c “processor /proc/cpuinfo
256
S ps auxww | grep 3437472
gthain 3437472 4364 1328 ? Ds 11:03 7:33 scilence job

Essence of Debugging:
Binary Search

What | know right now:

What | want to know:

perf trace command

S sudo /bin/bash
Password:
perf trace -p 3437472 —-duration 10

_ Only show syscalls
-p <pid to trace> whose duration is at

least 10 milliseconds

(why 10?)

"Duration” of a syscall

Duration is real time
Some long durations are (probably) OK:
e.g., sleep
But sleep Is not a syscall — "nanosleep” Is
Also, the sleep-like calls:
select, epoll, futex

perf trace command

perf trace -p 3437472 —-duration 10

95.705 (63.135 ms): futex(val: 895) = 0
95.411 (©63.417 ms): futex(val: 895) = 0
95.094 (63.155 ms): futex(val: 895) = 0
95.714 (63.126 ms): futex(val: 895) = 0
95.741 (63.098 ms): futex(val: 895) = 0

perf trace command

perf trace -p 3437472 —-duration 10 —-e '!futex'

But only show

NOT (1)
Futex calls

perf trace command

perf trace -p 3437472 —-duration 10 —e '!futex'

.3 (821.412 : read(fd: 3</staging/big file>, ..
(738.578 IN) : read(fd: 3</staging/big file>, ..
(819.972
(

828.883 : | WHOAHI
Way too big!

S
./
6

/Staging Is on ceph...

Solution: call ceph admin

Call ceph admin, inform fs system
Ceph admin understands problem, fixes it

5 minute later, job starting running fast

perf trace command -- after

perf trace -p 3437472 —-duration 10 —e '!futex'
.3 (21.412 : read(fd: 3</staging/big file>, ..

.578 : read : 3</staging/big file>, ..

o) (fd
.7 .972 : read(fd: 3</staging/big file>, ..
0 .883 : read (fd

: 3</staging/big file>, ..

And the job finished in roughly 20 minutes!

Why not grep?

perf trace —-p 3437472 |

grep —-v 'futex'

LInux
Kernel

What happens if
kernel can not keep
up?

(Common if a lot of
data coming back)

User
Space
program

(pert)

Two choices

Drop
Don't send info, just drop on floor

Block
Slow down traced process

perf trace

1056.747 (0.478 ms) :

LOST 47 events!
1056.747 (0.568
LOST 45 events!
1056.747 (0.654
LOST 39 events!
1056.747 (0.741
LOST 53 events!
1056.747 (0.853
LOST 8 events!
LOST 38 events!

ms) :

ms) :

ms) :

ms):...

[continued]: read()) = 8192

[continued]: read()) = 8192

[continued]: read()) = 8192

[continued]: read()) = 8192

[continued]: read()) = 8192

LInux
Kernel

All results

User
Space
program

(perf)

LInux
Kernel

All results

grep

]

Us
Space
program

(perf)

Why not strace?

strace blocks, not drops

Performance isn't biggest problem but is one

Impact on traced processes is.

Strace uses ptrace(2), slow, clunky, generic

A word on "performance”

Use case:
perf trace --summary

We added

htcondor eventlog read

For sanity check, checked memory and cpu
performance (with time) - MUCH SLOWER

condor_userlog simple, compute

1.) Reads event log file
2.) Deserializes
3.) Prints out one line per event

$ condor userlog /var/log/condor/GlobalEventLog | head

Job Host Start Time Evict Time Wall Time Good
Time CPU Usage

269288.7 172.22.60.140 9/10 00:36 9/10 00:36 0+00:00
0+00:00 0+00:00

269288.7 172.22.60.138 9/10 00:36 9/10 00:36 0+00:00

0+00:00 0+00:00
2690298 7 172 22 60 61 9/70 0026 9/70 00-36 0O+00-00

htcondor eventlog read
VS

condor_userlog

$ time condor userlog
/var/log/condor/GlobalEventLog > /dev/null

real Om36.707s
user Oml7.4062s
SYS Oml19.243s

perf trace --summary condor userlog GlobalEventLog> /dev/null

Summary of events:

condor userlog (1917553), 56611085 events,
100.0%

syscall calls errors
stat 11821024 0
fstat 10828288 0
gettimeofday 5413529 0
read 221032 0
write 19018 0
brk 1017 0

perf trace -e stat --call-graph dwarf condor userlog

1990.826 (0.263 ms): condor userlog/2262058
stat (filename: 0Oxea3efb43, statbuf: 0x7f£fd30495f£d0)
= 0
_Xstat (inlined)
__tzfile read (/usr/lib64/libc-2.28.s0)
tzset internal (/usr/lib64/libc-2.28.s0)
tzset (/usr/libo64/libc-2.28.s0)

__GI timelocal (inlined)

ULogEvent: : readHeader

ULogEvent: :getEvent (/usr/l1ib64/libcondor utils 10 7 0.so)
ReadUserlLog: : readEventNormal

ReadUserlLog: : rawReadEvent

ReadUserlLog: :readEventWithLock

time condor userlog GlobalEventLog > /dev/null

real Om35.4406s
user Oml7.486s
SYS Oml7.960s

time TZ=GMT condor userlog GlobalEventLog >
/dev/null

real Om28.592s
user Oml8.112s
SYS Oml10.480s

A0 Wb sen@ngllahio e xeensyall
for userspace to reduce

Linux
User
Useful Space
Info program
| (perf)

Summary is tiny percentage.How
do we just get it from kernel?

Linux
User
Useful Space
Info program
(perf)

eBPF: send code to data

Linux
User
Useful X eBPF Space
Info program
(perf)

eBPF: send code to data

Linux
summary User
Useful Space
info ﬁr@ program
| (perf)

opensnoop statsnoop

syncesnoop

eBPF: big

Linux bcc/BPF Tracing Tools

ucalls uflow
uobjnew ustat

python* ruby*

c* java* node* php¥*

mysqgld_gslower
dbstat dbslower
bashreadline

gethostlatency
memleak

\\\ uthreads ugc | /, sslsniff
filetop \
filelife fileslower o * ’/ syscount
vfscount vfsstat Applications killsnoop
cachestat cachetop\\\ Runtimes execsnoop
dcstat dcsnoop ‘(/ exitsnoop
mount snoop System Libraries pidpersec
4 cpudist cpuwalk
trace 1 1
argdist R System Call Interface » runq iﬁn;‘s’rl‘ngg
funccount \\‘\ ”’,,_——””.cpuunclaimed
Funciatenc VFS 4 Sockets “ o
stackcounty Scheduler offcputime wakeuptime
profile - File Systems / TCP/UDP <1 offwaketime softirgs
. slabratetop
btrfsdist / Volume Manager P . :
Pt Vitual 4 oomkill memlea
ext4dist ext4dslower) . hﬂenuxy P p
nfsslower nfsdist 4 Block Device Net Device hardirgs
xfsslower xfsdist -« criticalstat
zfsslower / / Device Drivers ttysnoop
zfsdist

WeBPF eBPF: enormous

USE CASES USER SPACE KERNEL

&% nNetworking Qreeeeenee: A Dev Tools ﬁ Kernel Runtime
AL
s =0 Verifier & JIT Helper AP
Security e TUTTIPooS 05 Runtime Maps
........................ 1

Q Observability O @‘ Application Tracing Profiling Monitoring @‘ Kernel Stack

e dbd
DON'T PANIC

(yet)

Historical Aside
HeBPF (2014)

\\ll/
inspired by SO(LA—I:IS'
Inspired by
(2005)\ ﬁra

yn

(1994)

Greg's (surely wrong) eBPF summary

A constrained 16 register assembly language
non-Turing complete — remind you of ?7??
With compilers for C, Python, other source

And built-in aggregating data structures
With a (jit) implementation in the kernel
Can be triggered on any kernel probe

Allow some (re) programing of the kernel

Two reactions:

OMG - This can't be good Cool

1. Security? 1. Ultimate Power
7. Stability of kernel? 2. | can think of 8 uses...
3. Complexity 3. When can | start?

Start with pre-built tools...

execsnoop Traces all exec pcall
opensnoop Traces all file open
biolatency Display block (disk) latency
biosnhoop Traces block access
tcpconnect Traces all tcp connect
tcpaccept Traces all incoming tcp
gethostlatency Traces all DNS lookups

e.g. execsnoop

DaemonCoreDutyCyle

IS > 0.95 on AP — Why?

(you DO watch DCDC?)
Aside:

HTCSS good at noticing,
not so good at isolating

execsnoop

TIME (s)
.602
. 940
. 944
.828
. 830
.268
271
.018
.621
.023
.026

w W D DN DN PP O O

PCOMM
condor shadow
sh
condor g
sh
condor g
sh
condor g
sh
condor g
sh

condor g

PID

2421138
2421145
2421145
2421159
2421159
2421165
2421165
2421170
2421170
2421178
2421178

PPID RET ARGS

2903754 0 /usr/sbin/condor shadow 7.15
2421144 0 condor g
2421144 0 /usr/bin/condor g
2421158 0 condor g
2421158 0 /usr/bin/condor g
2421164 0 condor ¢
2421164 0 /usr/bin/condor g
2421169 0 condor g
2421169 0 /usr/bin/condor g
2421177 0 condor g
2421177 0 /usr/bin/condor g

$ watch —n 0.1 condor_qg

Please don't do this. Can kill an AP
use "condor watch Q" instead

"-n 0.1" means 10 Hz

We killed the "watch", AP returned to normal.

execsnoop

TIME (s)
.602
. 940
.944
.828
.830
.268
.271
.618
.621
.023
.026

W W NN NN R 2 O o O

PCOMM

condor shadow
sh
condor ¢
sh
condor ¢
sh
condor g
sh
condor g
sh

condor g

e N\ otice the time diffs here?

2421138 2!
2421145
2421145
2421159
2421159
2421165

Not 10 Hz, at all

NN NN

mean sched

24211/\J
2421178 2
2421178 2

.15

Aside: why so common?

google "watch condor_qg"...

0 Jok Submission - Batch Docs b -+
&« C { @& batchdocs.web.cern.ch/tutorial/exercisela.html S e ¥ M » 0O 3
.." CHTC Slack & HTCondor Design. .3 @ HTCondorWiki B Coverity Scan - Proj... a Condor Staff Sched... ﬂ Control Group APls... .." ops-summit-htcon,

N Job Submission

Batch Docs

Introduction

Batch Concepts »
HTCondor: Local v
Overview

Getting Started with Local
Job submission

Spool schedds

File transfer to root URL
Benchmarking jobs

Managing schedd with
myschedd

Using the python API to submit

Motes for specific use
cases

Tutorial -
Introduction
Job Submission
Submitting Multiple Jobs
Transferring Output Files

Suppress Qutput File

Tramcrmarratismm

Q, Search
Monitoring the job
9) Table of contents
The command condor_g can be usas r g The Job
ing the job

-- Schedd: bigbird@4.cern.ch : <128.Tas

OWNER BATCH_NAME SUBMITTED

fprotops CMD: welcome.sh 12/6 15:88

|
1 jobs; B completed, 8 removed, 1 idle,

The condor_g command provides information regarding the current state of the jobs, the name of
the schedd, the name of the owner, etc.

The progress of a job can be followed by executing:

watch condor_c

The -nobatch option can be used status of each individual job rather the cluster

summary.
condor_q -nobatch
- Schedd: bigbirdB4.cern.ch : <128.142.7194.115:96187... @)
1D OWNER SUBMITTED RUN_TIME ST PRI SIZE
21847.9 fprotops 3/28 17:13 ©@+00:00:00 I © 0.8 [

was

NB | notebook.community x +

& C 1Y & notebook.community/fivukotic/ML_platform_tests/tutorial/benedikt/HTCondor%205Submitting%20Jobs G v v MR 0O ,E; :

5= CHTCSlack & HTCondor Design € JRA @ HTCondorWiki h'j Coverity Scan - Proj... ﬁ Condor Staff Sched... ﬂ Control Group APls... ;." ops-summit-htcon

You can also get status on a specific job cluster:

$ condor_g -nobatch 1144.8 -- Schedd: training.osgconnect.net : <192.176.227.119:94197... ID OWNER SUBMITTED RUN_~

3

MNote the ST (state) column. Your job will be in the 1 state (idle) if it hasn't started yet. If it's currently scheduled and running, it
will have state R (running). If it has completed already, it will not appear in condor g .

Let's wait for your job to finish — that is, for condor_g not to show the job in its output. A useful tool for this is watch — it runs a
program repeatedly, letting you see how the output differs at fixed time intervals. Let's submit the job again, and watch condor_gq
output at two-second intervals:

$ condor_submit tutorial®l.submit Submitting job(s). 1 job(s) submitted to clus 145 $ watch -n2 condor_g usert

»

When your job has completed, it will disappear from the list. To clos

Sigh

©ld down Ctrl and press C.

about its execution from the condor_history command:

| TIME ST COMPLETED CMD 1144.8 username 3/6 €9:46 @+8@:00:12 C 3/6 @9::

= O *
€ CQuickstart-Submit Example HTC: X -+

& CcC 0 8 portal.path-ccio/documentation/htc_workloads/submitting_workloads/quickstart/ G =z w B R 0O 9 :

'I" CHTC Slack & HTCondor Design. © JrRA @I CondorWiki 8 Coverity Scan - Proj... a Condor Staff Sched... ﬂ Control Group APls... 'II' ops-summit-htcon,

Q. Search

DLE columns. Your job will be listed in the IDLE column if it hasn't
led and running, it will appear inthe RUN column. As it finishes
Q. Once the job completes completely, it will not appear in

Note the DONE, RUN, ams
Managing HTC Workloads On)) Table of contents

the PATh Facility started yet. If it's currently scC Job 1- A simple, nonparallel job

Submitting HTC Workloads up, it will then show in the DONE _
With HTCondor condor_q . Run the job locally

Quickstart-Submit Example Create an HTCondor submit file

HTCondor Jobs Let's wj

h —that is, for co g not to show the job in its output. A useful More about projects
a program repeatedis 3 ; . AT
e job again, and wa

Easily Submit Multiple Jobs tool fo
Checkpointing Jobs time in

Specific Resource Needs >

Software > S coljdcr_sul?ml ; tutorial®@l.submit
Submitting job(s).

Containers > 1 job(s) submitted to cluster 1441272

Using Data and Job Files > $ condor_watch_g

Automated Workflows >

When your job has completed, it will disappear fry TCondaor's

Note: To close watch, hold down Ctrl and press (J

Job history

Once your job has finished, you can get informat
condor_histery command:

Why is "watch condor_g" so bad?

And how can we get some insight?

perf trace -p pid of schedd

1268.509 (0.002 ms): getpid() 2903754

1268.520 (0.011 ms): write(fd: 5<SchedLog>) =79
1268.534 (0.002 ms): rt sigprocmask() = 0
1268.540 (147.908 ms): clone(flags: VFORK) = 301
1416.507 (0.008 ms)@Cclose (fd: 55) = 0

Condor_(q forks schedd (clone)

Here speed-of-light is ~ 8Hz

Why is clone/fork slow?

Roughly linear in memory size of schedd
(what happened to CoW? — page tables)
Why Is schedd big?

condor g —-all -tot

—— Schedd: submit-1l.chtc.wisc.edu : <1.2.3.4:5>

40713 jobs; 0 completed, 0O removed, 19281 idle,
3321 running, 18111 held, 0 suspended

Held jobs aren't free

Maybe don't keep them forever

Back to eBPF

bpftrace — easy mode to eBPF

Using bcc, even python is hard — why?

bpftrace is a much easier to use language

Modelled on AWK (1)

Bpftrace programs have...

Begin with block of kernel #include files...
BEGIN/END tag with block of source code

probe tag with block of source code
some magic globals blocks can use
Global maps/HashTables, printed on exit
Kind of like AWK!

Aside: What's a probe?

Place to attach code

Many different kinds, more being added...
For now, three probe types:

kprobe:func On entry to kernel function named func

kretprobe:func On any return from kernel function named func

tracepoint::syscall:open On entry to syscall open, even if name changes

#!/usr/bin/bpftrace
#include <net/sock.h>

BEGIN {printf ("Tracing network traffic.");}
kretprobe:sock recvmsg

{

W@recv bytes[pid, comm] = sum(retval);

Attaching 2 probes...

Tracing network traffic.

Grecv bytes[1614012, condor shadow]: 38
Grecv bytes[1135048, condor shadow]: 38
Grecv bytes[1499055, condor shadow]: 38
@recv bytes[2023650, condor shadow]: 38

[

[

[

[:
Grecv bytes[861103, condor shadow]: 593
Grecv bytes[2336929, condor shadow
[
[
[
[
[

596
Grecv bytes[2263702, condor shadow 599
@recv bytes[2263433, condor shadow 599

607
610

@recv bytes[1065538, condor shadow

]
]
]
@recv bytes[1459336, condor shadow]: 606
]
Grecv bytes[1808916, condor shadow]

What's the best thing about
AWIK-bpftrace?

One Liners!

A sampler platter of them

Stolen from:
https://github.com/iovisor/bpftrace/blob/master/doc

print file, proc for all opens

bpftrace —-e \

'tracepoilnt:syscalls:sys enter op
enat { printf ("%s %s\n", comm,
str (args.filename)); }'

snmp-pass /proc/cpuinfo
snmp-pass /proc/stat
snmpd /proc/net/dev

syscall counts by process

bpftrace -e 'tracepoint:raw syscalls:sys enter ({
@[comm] = count(); }'

Attaching 1 probe...
~C

bpftrace]: 6
systemd] : 24
snmp-pass]: 96
sshd]: 125

@
@
@
@]

syscall counts by process

bpftrace -e 'tracepoint:syscalls:sys exit read /pid ==
18644/ { @bytes = hist(args.ret); }'

32, 64) SlRRgdgagdadaaadaddaaaaaaaadaaadaaaaaaagageaeaaaaage
64, 128) 19 |@EEEEQEEEEEEQQRQQRRAEQM

dbytes

[0, 1] 12 |@EREEEEREQQE |
[2, 4) 18 |QREEEQAQEQREEEQAQRQREEEREAQM |
[4, 8) 0 | |
[8, 16) 0 |

[16, 32) 0 |

[|
[|

Histogram of bytes read

bpftrace -e 'tracepoint:syscalls:sys exit read

32, 64) SlRRgdgagdadaaadaddaaaaaaaadaaadaaaaaaagageaeaaaaage
64, 128) 19 |@EEEEQEEEEEEQQRQQRRAEQM

/pid == 18644/ { @bytes = hist(args.ret); }'
dbytes
[0, 1] 12 |[QRQRREEQEQE |
[2, 4) 18 |[QRRQRQQEQEQEQEQEQEQAQEQEQEQEQEE
[4, 8) 0 | |
[8, 106) 0 |
[16, 32) 0 |
[|
[|

Histogram of bytes read

bpftrace -e 'tracepoint:syscalls:sys exit read

32, 64) SlRRgdgagdadaaadaddaaaaaaaadaaadaaaaaaagageaeaaaaage
64, 128) 19 |@EEEEQEEEEEEQQRQQRRAEQM

/pid == 18644/ { @bytes = hist(args.ret); }'
dbytes
[0, 1] 12 |[QRQRREEQEQE |
[2, 4) 18 |[QRRQRQQEQEQEQEQEQEQAQEQEQEQEQEE
[4, 8) 0 | |
[8, 106) 0 |
[16, 32) 0 |
[|
[|

Final use case -- IGWN

IGWN had network overload, but hard time
tracking down to single job

Pretty sure it was file xfer (or maybe sched?)
HTCondor keeps stats in history file
But only after xfer completes — too late

Great Programers copy

bpftrace ships with "tcpsnoop"”
Almost does what | wanted
But per user, not per process

#!/bin/bpftrace

#include <net/sock.h>
#include <linux/cred.h>
#include <linux/sched.h>
#include <linux/uidgid.h>

BEGIN
{

printf ("Per User shadow network usage. Ctrl-C to
stop\n") ;

clear (@recv _bytes);

clear (@send bytes) ;

kprobe:sock recvmsg,

kprobe:sock sendmsg

{

$sock = (struct socket *)arg0;

$family = $sock->sk-> sk common.skc family;

/* Set a flag to ignore non-IP (unix domain sockets) */

if ($family == AF INET || $family == AF INET6) {
@inetsocket[tid] = 1;

} else {

@inetsocket[tid] = 0;

kretprobe:sock recvmsg

{

1if (((comm == "condor schedd") || (comm ==
"condor shadow")) && (@inetsocket[tid] && retval
< 4294967000)) {
Sct = (struct task struct *)curtask;
Scred = (struct cred *)Sct->cred;
Seuid = S$Scred->euid.val;
@recv bytes[Seuid, comm] = sum(retval);

}
delete (@inetsocket[tid])

kretprobe:sock sendmsg

{

1f ((comm == "condor schedd") || (comm ==
"condor shadow")) &&
(inetsocket[tid] && retval < 4294960000)) {
Sct = (struct task struct *)curtask;
Scred = (struct cred *)Sct->cred;
Seuid = S$cred->euid.val;
@send bytes[Seuid, comm] = sum(retval);

}
delete (@inetsocket[tid])

@recv bytes[1000, condor schedd]: 1297
@send bytes[1000, condor schedd]: 296

@send bytes[24755, condor shadow 799
@send bytes[21454, condor shadow]: 799
1566

[
[
[]
[]
@send bytes[21046, condor shadow]
@send bytes[23265, condor shadow]: 3026
[]
[]
[]

@send bytes[20589, condor shadow 15856
@send bytes[21506, condor shadow 6954623
@send bytes[23201, condor shadow 12239630

eBPF futures: mutation

Originally read-only
Some limited mutation
Replacing k8s networking sidecars
Device limiting (see tomorrow)
Future ??7?

eBPF: Ultimate POSIX intervention?

Should HTCondor have 15t class bpf?

If so, who controls? Submitter? Admin?
Usually need root/CAP_BPF — worthwhile

What tracing info wanted from jobs?
all file opens? User selects from menu?

References

bpftrace
https://github.com/iovisor/bpftrace/blob/master/doc
Perf testing in general

https://www.brendangregg.comgpr ;
Performance Tools

dystems
Performance

Enterprise andithe Cloud: :
Second Edluon 3

Linux Syste
Applicati

Brendan Gregg ;

2
-
7
(@]
oz
B
(= ¥ . o b
P f Ve d .
3 L URhE TR T
z - 3 . B
) ST S SR AT |
‘5 < oY 7L ik ad
z P o e
o 4
n -
=)
= o=
= P
g y 1 é.._—'_

3 B

https://github.com/iovisor/bpftrace/blob/master/doc

Conclusion

This was not a HTCSS talk — is that ok?

eBPF/perf tools are powerful and under used
Bpftrace Is an easy entry

This is just the beginning...

	Slide 1: Advanced debugging with eBPF and Linux tools
	Slide 2: Background
	Slide 3: What do experts say?
	Slide 4: A word on "Advanced"
	Slide 5: Go Install these packages! NOW!
	Slide 6: Motivating example
	Slide 7: Initial investigation on EP
	Slide 8: Essence of Debugging: Binary Search
	Slide 9: perf trace command
	Slide 10: "Duration" of a syscall
	Slide 11: perf trace command
	Slide 12: perf trace command
	Slide 13: perf trace command
	Slide 14: Solution: call ceph admin
	Slide 15: perf trace command -- after
	Slide 16: Why not grep?
	Slide 17: Super simplistic Linux model
	Slide 18: Two choices
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Why not strace?
	Slide 23: A word on "performance"
	Slide 24: Use case: perf trace --summary
	Slide 25: condor_userlog simple, compute
	Slide 26: htcondor eventlog read VS condor_userlog
	Slide 27
	Slide 28
	Slide 29
	Slide 30: How to get at all info in kernel?
	Slide 31: Summary is tiny percentage.How do we just get it from kernel?
	Slide 32: eBPF: send code to data
	Slide 33: eBPF: send code to data
	Slide 34: eBPF: big
	Slide 35: eBPF: enormous
	Slide 36
	Slide 37: (yet)
	Slide 38: Historical Aside
	Slide 39: Greg's (surely wrong) eBPF summary
	Slide 40: Two reactions:
	Slide 41: Start with pre-built tools…
	Slide 42: e.g. execsnoop
	Slide 43
	Slide 44: $ watch –n 0.1 condor_q
	Slide 45
	Slide 46: Aside: why so common?
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Why is "watch condor_q" so bad? And how can we get some insight?
	Slide 51
	Slide 52: Why is clone/fork slow?
	Slide 53
	Slide 54: Back to eBPF
	Slide 55: bpftrace – easy mode to eBPF
	Slide 56: Bpftrace programs have…
	Slide 57: Aside: What's a probe?
	Slide 58
	Slide 59
	Slide 60: What's the best thing about AWK bpftrace?
	Slide 61: A sampler platter of them
	Slide 62: print file, proc for all opens
	Slide 63: syscall counts by process
	Slide 64: syscall counts by process
	Slide 65: Histogram of bytes read
	Slide 66: Histogram of bytes read
	Slide 67: Final use case -- IGWN
	Slide 68: Great Programers copy
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: eBPF futures: mutation
	Slide 75: eBPF: Ultimate POSIX intervention?
	Slide 76
	Slide 77: References
	Slide 78: Conclusion

