USCMS Analysis Facility Discussion

Matteo Cremonesi - June 13, 2024

Carnegie Mellon University

What is an "Analysis Facility"

Common, jointly developed, software-defined infrastructure

Tuned to improve ease and turnaround time of enduser analysis

Deployed on hardware sufficiently optimized to realize those improvements

What is an "Analysis Facility"

- Ultimate goal: deliver high performance analysis capabilities to users - 200 Gbps + 200 MHz / user
- Mostly a software concept
 - Collection of <u>services</u> that make it easier and faster to do analysis
- For hardware, define "<u>minimum system requirements</u>"
 - One of this year's goals

The USCMS R&D Analysis Facility Effort

Fermilab

Getting physics things done at MIT

This Year Goals and Milestones

- Benchmarking emerged as the highest priority
 - Summary <u>document</u>
- Recommendation: run <u>Analysis Grand Challenge</u>
 - Test capabilities to run real analysis
 - Helps comparing AFs
- Moving forward: consider 200 Gbps challenge
 - Helps identify bottlenecks
 - i.e. compression of inputs has large effect
 - Can inform on hardware specs

What is AGC?

- workflows designed to analyze the data collected at the HL-LHC"
- IRIS-HEP-led effort => analysis workflow designed using the IRIS-HEP stack of tools
- Analysis workflow includes:
 - columnar data extraction from large datasets
 - data processing (event filtering, construction of observables, evaluation of systematic uncertainties) into histograms
 - statistical model construction and statistical inference
 - data visualization

• "The AGC is developing a series of increasingly **realistic** benchmarks for

well aligned with the data analysis workflow supported by the USCMS AFs

AGC and Scaling

		Timeline	d
getting ready for HL-LHC		2025	
		2026	
		2027	
		2028	

With 30 simultaneous users

AGC Metrics

Quantitative metrics

- Data volume processed (per time and core)
- Event processing rate per core
- Scheduling efficiency
- Additionally
 - data pipeline comparisons to test speedups provided by **caching** data
 - measurements of the effect of **concurrent** users
 - evaluations of the **user experience**

AGC and USCMS AFs

- Nebraska (coffea-casa) provides the backbone to AGC
- Large contribution to AGC from Fermilab EAF
 - UW student serving as the contact person for AGC at EAF
 - EAF client implemented in the AGC settings

he backbone to AGC ermilab EAF

200 Gbps Challenge

- 8-week exercise
- <u>https://github.com/iris-hep/</u> idap-200gbps
 - Used to run the challenge at Nebraska
- Simplified analysis setup compared to what is done in AGC
 => project focused on data throughput

11