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Objective: Find Ground State of H

* Goal is to put the circuit in the ground state of a target
Hamiltonian H = T+ V where T is the kinetic energy
operator and V is a local potential

* The Hamiltonian will be discretized over a finite volume
periodic lattice in first quantization.

* Example Target Problems:
+ 2D: Fractional Quantum Hall

# 3D: Nuclei (May be simpler than encoding shell model)



Focus on Laplacian

* The challenge is to efficiently implement the Laplacian.
The one particle discrete version being;:

D=1
Viy(ar) = L) = 35 T, wlii = 2) = 29(7) +y(7 + &)

« The difficulty over the distinguishable particle case is
that the references to neighboring lattice sites are
essentially motions of the particles that interact with
exchange symmetry.



BRGC Code

+ Gray code is an encoding of the integers
0 ... 2" — 1 such that neighboring integers

have codes differing in a single bit. Itis a i &
Hamiltonian Path on a D=n dimension binary 001
hyper-cube.

011

» Binary Reflected Gray Code is constructed
recursively by reflecting the code from one
fewer bits, and adding a leading sunblock bit.

+ We are interested because neighboring codes
automatically share all but one spin state in
their corresponding basis elements. This
simplifies the operator structure of the
Laplacian.



Distinguishable Particles

# ] am building on top of [1], which implements the

Laplacian for distinguishable particles . f”’ o
* Hamming-distance-2 Gray code : m
encoding of 1D position o] ﬂ U
* Red ovals are penalized states . g\
* The 1D laplacian is simply 0| -

L= = Z c,;, generating all neighbor

contributions. Off path contributions are filtered away
by penalties

5 [1] Chang, McElvain, Rrapaj, Wu, PRX Quantum 3, 020356 2022




HO Example with H2GC encoding

1.0 =
32 Lattice positions, 8 qubits - .
Off path penalty B enabled first, 06 I,'
potential V last. o z
. . [
Ats=0.0H = Z 6. The GS wave o y .
function is constant with amplitude s e B (5
\/1/256 0.0 0.2 0.4 0.6 0.8 1.0
S
Ats = 0.5, the GS wave function is o
; 0.3 x
now only along the path with i
amplitude 4/ 1/32 e s
At s = 1 the wave function takes on =
the familiar harmonic oscillator GS 0.1
form A wry
0.0 - I ......... I I e |
= =0 0.0 05 10
X



Indistinguishable Fermions

* A single fermionic product state is a sum of distinguishable
particle product states (4 particle case):

da(To) Pb(T0) @c(T0) @al(To)
o ba(®1) Op(x1) @c(21) Palz1)
e VAl |@a(T2) Gb(T2) Pc(T2) PalT2)
Dol 3] oplEs) O.aa) oglas)

=labecd

where a, b, ¢, d are integer position labels on the lattice.

* There are 4! such terms that each naively corresponds to a
product state. We choose the one satisfyinga < b < ¢ < d to
represent the fermionic state.



1D, 2 Particles

+ Position labels =

1D position index

+ Shaded sites are

suppressed by
penalty

+ (lear sites are

associated with
Slater determinants,
AKA properly
ordered states
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1D, 2 Particles

+ Position labels =

1D position index

+ Shaded sites are

suppressed by
penalty
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associated with
Slater determinants,
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ordered states

0

1

2

Particle O
I w

(6)]

(o)}

Particle 1

Exclusion

Ordering

Non-
Periodic



Distinguishable — Fermions

article
¢ Example: 1D with 2 particles e
position 0 1] 2 3 a
« Distinguishable L misses red edm oy .
dashed contributions and == BN b
generates extra contributions | * o * iR e
(suppressed by penalties) e o B
* How do we implement the = LI
red contributions? Periodic 3 10 o
wrapping has violated the f

ordering constraint.
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Entanglement Gadgets

+ Qur first exposure to entanglement is often a 2 qubit wave function

1)

* In this wave function the two qubits carry the same information,
encoded differently.

+ In an entanglement gadget we add AH = Q * PoVlict ywhere peor/iict
projects out states that conflict with the desired entanglement. Q is the
penalty value, ensuring that low lying states respect the desired
entanglement. For the 2 qubit wave function above

PR Vs R
# Actions on spin a can be replaced by actions on spin b

« Optimization: The sum of projection operators can be allowed to

overlap. The penalty may vary across the conflict subspace
11



Gray Code vs Binary

+ We want Gray code positions for the Laplacian, but binary for
the olid ordering projector P27 —h, < b, = = - b,

* Using the optimization (multiple terms may be on)

~/

Punordered = (bO = bl) 2 (bl > bZ) A Pk (bA—2 = bA—l)

* This implements both the ordering and
exchange penalties in diagram to right

* There are two remaining tasks

* Implement binary/gray entanglement gadget

+ Implement binary b > a ( =a < b) projector

12



Binary/Gray Entanglement

* Boolean relationship:
Sn—1 = bn—l’ 51— bi D bi_l_l

* Enforce bit by bit with
AH = 0P, .o, 0,

- 100 111 010 001
A e <Pgi,bi,bi+1 t Pobibig T Peibibiy T Peibibisy

+ We will use g; the for the Laplacian and
the b, for ordering

155

)

Binary Gray

000
001
010
011
100
101
110
111

0
0

01
01
110
111
101
100

00
01
11
0




Less Than Projector

+ Recursive boolean definition

x;=a; D b,

Gl = Dt =% 0D 11 X (a[n—Z:O] - b[n—Z:O])

# The x’s can be implemented as additional qubits with penalties from

the previous slide.

# A qubit is associated with each comparator size and a 4 qubit

penalty expression is used to make the qubit match the required
result

« Instead of the serial boolean form one can start with carry lookahead

implementations, reducing the number of levels of ancillary qubits

14



Rotation Operators

» Xor = (12)[Il) + o507 + 0,0] + o507 | is the swap

operator

+ For 2 qubits R§ = R§ = X B

l l

2 R(l)qlz = 01410 = 10101 R(ﬁz = A12401 = A02412

* Rotate sub-partitions, then rotate leftmost qubits
R~ pR pRk pR bR
RO...6 = R()36R()12R345R6

“ Will need multi-bit rotations - all pos bits ot particles

15



Bloch-Horowitz Equation

« Used to make an effective Hamiltonian in a subspace P (with Q = 1 — P) of

the full Hilbert Space
(P+ Q) H|v;) = E; |[v;) Schrodinger Eqn
(Bi — QH) [Y;) = Ei P |ty Rearrange
E;
), — = QHP |05) Reconstruct Wf

EzP|¢z> — s P P‘¢z> — HeffP”(pJ BH Equatlon

* The boxed expression is the BH Equation, forming an effective Hamiltonian

acting in P with the same eigenvalues and projected eigenstates as H



. L ()
Mulu-Stage Decomposition -0

1) (0]
“ Rotation by 3 in two layers 0
H-_PHP t o, x1o+ Eo xo 1 = P H.P] + Rg,l,z o THL v

* Analyze with BH eqn letting iz
i — Pc(z)’ O — Pc} project states with qubit a = ‘1)

Y
P
E — Q (PH;P + 04 x12 + EoFxo1)
=P (PH,P + Ec}x01) (1+ 0, xo1/E)P higher powers in series are 0
=PH, P + xo1X12

H.¢s =P (PH P + o712 + Eol x01)

+ H% is energy dependent. Requires self consistent solution. Bound state solutions
converge by simple iteration

* In the low lying model space we have generated a 3 bit rotation, without explicitly
multiplying out the terms. Now we have a hammer ...

17



All Rotations

* Generalize to all swaps, left and right rotations by 3

A=l A=
= Interpret 1,j as wrappin
B o ) n tE LBy in [Op A 2 1] 2,

[Eeven jEodd

A—-l A-1
L] + L]
— -+ +
+0, E Vi Eo d Fo E X i1 Singleton o, results in
i€odd JE€even effective Zi,i +1

A
L R
= 2 <)(i,i+1 e i ek Ri,i+1,i+2)+lgn0red

=0

« Ignored is made of terms like y;,yx5¢. Applied to ordered states or

states with one particle out of place they always produce an unordered
and suppressed state

18



The Laplacian and Particle Order

« We act with the unscaled distinguishable Laplacian L on an ordered basis state:

L|13)={03)+|23)+ |1.2)+]|1,0)

+ Three of these states are properly ordered, but the last one is not! How do we
recover?

L(1-yx,) |13)=]03)—{3,0)+]23)-[3.2)+
| 1,2)— [2.1) + [1,0)—0,1) I —— :
posion 0 15 o5 e
« Particle swapping operator y; ; generated three coe oo o i o
more improperly ordered states, but it recovered 0 oo, IR

the proper order for ‘ 1,0) with corrected phase.

The improperly ordered state contributions will i i
be suppressed by the penalties on those states S

2

# The full operator to recover proper orderings is
( 1+ (—1)**! (RR + RL) ) Tt e add the non- 3

periodic penalty, then this operator is not needed

19



27D

# In 1D the increment or decrement of a particle position

either finds an unoccupied and properly ordered position,

or an occupied position blocked by exclusion principle

+ In 2D, using a row first labeling, a

vertical increment can hop over up
to A — 1 particles.

Row
+ Recovery of proper ordering requires

A A
S iy <R§:i+j] + Rﬁ_j;i]>

i=0 j=1

0

1

2

3

Column
0 1 2 3
0 1 2 3
4 @ 6 |(7)
)| 10 | n
12 13 14 15
15,7,8) = ]9,7.8)

« Assume that A <« 2", limiting the size of required rotations

20




Summarizing H

+ Components of H are penalties to define subspaces, penalties to
establish entanglement, rotation operators to recover properly
ordered states and application of the discrete particle Laplacian

H=V+ Q <IS H2GC + 13 unordered+ [P nonperiodic] > ﬁltering
+0 ( 2 AH M ot AH .+ AH ) entanglement
\ ( \
il Z o ||1+ Z Z (—1y <R[l ] T R[I; . l]> L* ordering
\iEposbits J \ i=0 j=I1 )

» B = A, or we can approximate with B a small fixed
number . The approximation will improve with

= 2n/2+1

2



Tesung

# ] ran an 8 qubit simulation of two
particles in 2D, starting with a
transverse H and ending with
the fermionic Laplacian

* Diagonalization of directly specified
Laplacian yielded degenerate ground Sequencing of H components
states

» Adiabatic evolution of prior slide yielded a state that has the
same energy and is a linear combination of the degenerate states

* Next step: Introducing a potential and simulate to find ground
state - declare victory

22



Conclusions

+ Cost in qubits/pauli-operators is polynomial in A” and n. The
number of basis states we are solving in is O(2")

* Penalties unwanted contributions from the distinguishable particle
Laplacian that connected to improperly ordered states

* Entanglement gadgets were used to simplify a number of operations
including maintaining position in both binary and gray encodings
to minimize both the fermion ordering constraint implementation
and the included distinguishable particle Laplacian

* As in the distinguishable particle case, the finite volume protects the
gap between the GS and the first excited state, protecting the rate at
which penalties and the potential are introduced

25






