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etc…

Long term goal



・real time

・fermionic systems w/ chemical potentials

・systems w/ topological terms (ex. Chern-Simons, theta)

Numerical simulation in situations where

Physical situations w/ sign problems (typically)

What can we do by quantum computer?: (details later)

conventional approach has a problem

that’s why QCD phase diagram is still incomplete

Monte Carlo method sign problem



Challenges
・ needs real device w/ certain specification

・Quantum field theory → Quantum computation?

・inventing/improving methods → reduces required resource

(qubit #, fidelity, etc...)

To do： (except waiting for development of hardware)

・bench mark, estimation of required computational resource

・ pioneers problems efficiently solved by QC

developing lattice field theory in operator formalism

proposing new error correcting codes etc…

especially finding nice regularization of gauge theory
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2. QC for QFT

3. QFT for QC (briefly)

4. Summary



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

②

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

probability



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

② Numerically Evaluate it by (Markov Chain) Monte Carlo method  
regarding the Boltzmann factor as a probability:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

probability



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

In operator formalism,

sign problem is absent from the beginning

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

(∃various approaches within framework of path integral formalism but I’ll skip it )



Cost of operator formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

Quantum computers do this job?

regularization needed!



“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



Citation history of “Hamiltonian Formulation of 
Wilson's Lattice Gauge Theories” by Kogut-Susskind

(totally 2330 at this moment)

https://inspirehep.net/literature/1336


Flow of researches in the field (?)

Theory

Physics

Schwinger model

2+1d abelian

2+1d non-abelian

3+1d abelian

3+1d non-abelian

Spin chain Ground state Time evol. Scattering/decay Non-eq. ・・・



Charge-𝑞 Schwinger model 

Physical states are subject to Gauss law:

x x x x x x
・・・

𝑈1, 𝐿1 𝑈2, 𝐿2 𝑈𝑁−2, 𝐿𝑁−2

𝜒1 𝜒2 𝜒𝑁−2

𝑈0, 𝐿0

𝜒𝑁−1𝜒3𝜒0
𝑎

𝐿𝑛 − 𝐿𝑛−1 |phys⟩ = 𝑞 𝜒𝑛
†𝜒𝑛 −

1 − −1 𝑛

2
|phys⟩

gauge/electric field

fermion

"∇ ⋅ 𝐸 (𝑥)" "𝜌(𝑥) "



Schwinger model as qubits
1. Take open b.c. & solve Gauss law:

2. Take the gauge 𝑈𝑛 = 1

w/ 𝐿−1 = 0

3. Map to spin system:

[Jordan-Wigner’28]

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)



Schwinger model as qubits
1. Take open b.c. & solve Gauss law:

2. Take the gauge 𝑈𝑛 = 1

w/ 𝐿−1 = 0

3. Map to spin system:

[Jordan-Wigner’28]

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)

Qubit description of the Schwinger model !!



Ground state expectation value in massless case
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result

(after continuum limit)



Screening versus Confinement

potential between 2 heavy charged particles

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2
𝑥 ?

Let’s consider

Classical picture:

+𝑞𝑝−𝑞𝑝

confinement

Coulomb law in 1+1d

too naive in the presence of dynamical fermions



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

screening



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

(m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

but sometimes negative slope!

Σ ≡ 𝑔𝑒𝛾/2𝜋3/2

= Const.

∝ 𝑥

for qp/q = 𝐙

for qp/q ≠ 𝒁

𝑉 𝑥 ∼ 𝑚𝑞Σ cos
𝜃 + 2𝜋𝑞𝑝

𝑞
− cos

𝜃

𝑞
𝑥

[cf. Misumi-Tanizaki-Unsal ’19 ]

confinement?



Let’s explore this aspect by quantum simulation!

That is, as changing the parameters…
(figure used for press release)



Positive / negative string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15

Sign(tension) changes as changing 𝜃-angle!!

[cf. MH-Itou-Kikuchi-Nagano-Okuda ’21]



100 qubit simulation of Schwinger model
[Farrel-Illa-Ciavarella-Savage ’23]

(127-qubit device: ibm_cusco w/ error mitigation)

Ground state exp. of local chiral condensate :



Other simulations of Schwinger model

・112 qubit simulation of meson propagation
[Farrell-Illa-Ciavarella-Savage ’24]

・decay of massive vacuum under time evolution
[cf. Martinez etal.  Nature 534 (2016) 516-519]

・finite temperature [Itou-Sun-Pedersen-Yunoki ’23]

・quenched dynamics of 𝜃 [Nagano-Bapat-Bauer ’23]

・Schwinger model in open quantum system
[De Jong-Metcalf-Mulligan-Ploskon-Ringer-Yao ’20, de Jong-Lee-Mulligan-Ploskon-Ringer-Yao ’21,
Lee-Mulligan-Ringer-Yao ’23]

・finding energy spectrum [MH-Ghim, work in progress]

etc…



Scattering in Thirring model
[Chai-Crippa-Jansen-Kuhn-Pascuzzi-Tacchino-Tavernelli ’23]Thirring model on lattice:



Scattering in Thirring model
[Chai-Crippa-Jansen-Kuhn-Pascuzzi-Tacchino-Tavernelli ’23]Thirring model on lattice:

(12-qubit device: ibm_peekskill
w/ error mitigation )

Particle density of two wave packets:



On higher dimensional fermion
Go to higher dimensions!

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

・1d
𝜒𝑛+1
† 𝜒𝑛

Jordan-Wigner
∃𝑋𝑛+1𝑋𝑛,𝑌𝑛+1𝑌𝑛, 𝑋𝑛+1𝑌𝑛, 𝑌𝑛+1𝑋𝑛

local
・2d 

[MH, work in progress]



On higher dimensional fermion
Go to higher dimensions!

1st step: find a nice way to map 2d fermion to spins

Problem in naïve approach:

・1d
𝜒𝑛+1
† 𝜒𝑛

Jordan-Wigner
∃𝑋𝑛+1𝑋𝑛,𝑌𝑛+1𝑌𝑛, 𝑋𝑛+1𝑌𝑛, 𝑌𝑛+1𝑋𝑛

local
・2d (𝑁 × 𝑁 square lattice)

Relabeling site (𝑖, 𝑗) like 1d label (say 𝑛 = 𝑖 + 𝑁𝑗),

𝜒(𝑖,𝑗+1)
† 𝜒(𝑖,𝑗) = 𝜒𝐼+𝑁

† 𝜒𝐼
JW

∃𝑋𝐼+𝑁𝑋𝐼ς𝑖=𝐼+1
𝐼+𝑁−1𝑍𝑖 , etc…

non-local(cf. 𝒪(log𝑁) for Bravyi-Kitaev trans.)

[MH, work in progress]



Application of a new map to field theory

local

[Chen-Kapustin-Radicevic ’17]

“Gauss law” constraint at site 𝑣:

ex.) 

where 

2 Majorana fermions on face Spin op. on edge

𝑒𝐿(𝑒) 𝑅(𝑒) 𝑒
𝑒

𝑟(𝑒) 𝑟(𝑒)



Some other applications

・Inflation (scalar in curved spacetime) [Liu-Li ’20]

・Dark sector showers [Chigusa-Yamazaki ’22, Bauer-Chigusa-Yamazaki ’23]

・Quantum group approach to Non-abelian gauge th.
[Zache-Gonzalez-Cuadra-Zoller ’23, Hayata-Hidaka ’23]

・String/M-theory [Gharibyan-Hanada-MH-Liu ’20] etc…

・quantum machine learning [Nagano-Miessen-Onodera-
Tavernelli-Tacchino-Terashi ’23, etc…]

・Chiral fermion [Hayata-Nakayama-Yamamoto ’23]

・Efficient simulation of (2+1)d U(1) gauge th.
[Kane-Grabowska-Nachman-Bauer ’22]

・Measurement-based quantum computation
[Okuda-Sukeno ’22]

・Conformal bootstrap [Bao-Liu ’18]
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Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit
0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝



Errors in classical computers
Computer interacts w/ environment error/noise

Suppose we send a bit but have “error” in probability 𝑝

one bit

A simple way to correct errors:

0

1

0

1

𝑝
𝑝

1 − 𝑝

1 − 𝑝

① Duplicate the bit (encoding): 0 → 000, 1 → 111

② Error detection & correction by “majority voting”:

001 → 000, 011 → 111, etc…

𝑃failed = 3𝑝2 1 − 𝑝 + 𝑝3 (improved if 𝑝 < 1/2)



Quantum Error Correction

1.Encoding

2. Error detection

3. Error recovery

𝜓 ∈ ℋ 𝜓𝐸 ∈ ℋ𝐸 (ℋ ⊂ ℋ𝐸)

𝑂𝑖 𝜓𝐸 = 𝜓𝐸 ,

Take set of operators {𝑂1, ⋯ } s.t.

𝑂𝑖 error 𝜓𝐸 ≠ (error)|𝜓𝐸⟩

Then find eigenvalues of 𝑂𝑖’s using ancillary qubits

Act “inverse of error” based on the eigenvalues



relations between QEC & gauge theory

Motivations

1. ∃explicit examples

ex.) Toric code = 𝒁𝟐 lattice gauge theory [Kitaev ’97]

2.  

3. 

4. 

[Spirit may be similar to Rajput-Roggaro-Wiebe ’21, Gustafson-Lamm ’23, etc...]
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Gauge theory  =  redundant description of physical states
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relations between QEC & gauge theory

Motivations

1. ∃explicit examples

ex.) Toric code = 𝒁𝟐 lattice gauge theory [Kitaev ’97]

2.  Conceptual similarities: 

3.  Nature = Gauge theory & Nature = Quantum computer

4. ∃proposals on relations among QEC & concepts in HEP

ex.) Holography, Black hole, CFT, Renormalization group 

QEC =  redundant description of logical qubits

Gauge theory  =  redundant description of physical states

Gauge theory may know something on QEC?

[Spirit may be similar to Rajput-Roggaro-Wiebe ’21, Gustafson-Lamm ’23, etc...]

[Almheiri-Dong-Harlow ’14, Hayden-Preskill ’07, Dymarsky-Shapere ’20, Kawabata-Nishioka-Okuda ’22, 
Furuya-Lashkari-Moosa ’21, etc...]



What I’m doing…

QEC Gauge theory

errors unphysical op. (& excitation)

logical qubits physical states (w/ low energy)

“no error conditions” Gauss law (& min[energy])

logical op. gauge invariant op.

⋮ ⋮

ancilla for recovery additional matter

(stabilizer)

[MH, work in progress]

to make dictionary for classes of codes/gauge theories:



QFT as a generator of error correcting code?

Idea：if we get something new in one of them, 
then try to fill the other parts

[Ebisu-MH-Nakanishi ’23]

・Lattice model interpreted as QEC

・Low energy effective theory = QFT (BF theory)

Toric code

QFT ↔ Lattice model ↔ QEC

[Pace-Wen ’22]ex.) “Dipolar” generalization of Toric code

corresponds to a “layer” of BF theory w/ some rule



(Press release: systematic construction of new anyons)



Summary



etc…

Long term goal



Challenges
・ needs real device w/ certain specification

・Quantum field theory → Quantum computation?

・inventing/improving methods → reduces required resource

(qubit #, fidelity, etc...)

To do： (except waiting for development of hardware)

・bench mark, estimation of required computational resource

・ pioneers problems efficiently solved by QC

developing lattice field theory in operator formalism

proposing new error correcting codes etc…

especially finding nice regularization of gauge theory

Thanks!


