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Why are neutrinos important for a core-collapse supernova?
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Neutrinos:

• ∼ 1058 of them emitted from a single core collapse

• only they (+ GW) can reveal the deep interior conditions

• only they (+ GW) are emitted from the collapse to a black hole

Earth image: Kurzgesagt

https://kurzgesagt.org/
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Why core-collapse supernovae are good physics probes?

Advantages
• extreme physical conditions not accessible on Earth:

very high densities, long baselines etc.
• within our reach to detect (SK, JUNO, XENON, PandaX...)

What can we learn with a variety of detectors?

• explosion mechanism

• yields of heavy elements

• compact object formation

• neutrino flavor evolution

• non-standard physics
2 / 18

Bethe & Wilson (1985),
Fischer et al. (2011)...

Balantekin & Fuller (2013),
Tamborra & Shalgar (2020)...

Woosley et al. (1994),
Surman & McLaughlin (2003)...

Warren et al. (2019),
Li, Beacom et al. (2020)...

McLaughlin et al. (1999),
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Neutrino mass and flavor states
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mass states
̸= flavor
states



Neutrino flavor and mass states
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The Neutrino Many-Body Interactions Hamiltonian

H = Hν + Hνν

Vaccum term

Hν =
∑

p⃗

3∑
i=1

∑
j(̸=i)

∆m2
ij

2E
Tii(p, p⃗),

Tij(p, p⃗) = a†i (⃗p)aj(⃗p) ,

Neutrino-neutrino interaction term

Hνν =
GF√
2V

3∑
i,j=1

∑
E,⃗p

∑
E′,p⃗′

(
1 − cos θp⃗p⃗′

)
× Tij(E, p⃗)Tji(E′, p⃗′) ,
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The Neutrino Many-Body Interactions Hamiltonian

Tij =
∑

i′
(λi′)jiQi′ +

1
3
δij
∑

i

a†i ai,

Qi′ =
1
2

3∑
i,j=1

a†i (λi′)ijaj,

H =
∑

p

B⃗ · Q⃗p +
∑
p,p′

µpp′Q⃗p · Q⃗p′ ,

µ(r) =
GF√
2V

(
1 −

√
1 − R2

ν

r2

)2

,

B⃗ =
(
0, 0, ωp, 0, 0, 0, 0,Ωp

)
.

ωp = − 1
2Eδm2 and Ωp = − 1

2E∆m2
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Density Matrix Evolution

ρ ≡ |Ψ⟩⟨Ψ|
Reduced density matrix for a single neutrino

ρn = Trn[ρ] =
1
3

I+ 3
2

∑
j

λjPj


extracting the polarization vector components

Pj = Tr[ρnλj] .

Pν1 =
1
3

(
1 + 3

2 P3 +
√

3
2 P8

)
,

Pν2 =
1
3

(
1 − 3

2 P3 +
√

3
2 P8

)
,

Pν3 =
1
3

(
1 −

√
3P8

)
.
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Mass eigenstate P3 P8

ν1 1 1/
√

3
ν2 −1 1/

√
3

ν3 0 −2/
√

3



Entanglement measures

Bipartite Entanglement Entropy

Sn = −Tr [ρn log ρn] ,

Sn = log 3 − 1
3

Tr
[(

I+
3
2
λjPj

)
log

(
I+

3
2
λjPj

)]
,
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Comparison between 2-flavor and 3-flavor approach
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The results are for N = 5; initial state |ψ⟩ = |νeνeνeνeνe⟩ in NO
Always more mixing in 3-flavor case
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The evolution of a neutrino systems
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initial state |ψ⟩ = |νeνeνeνeνe⟩ → small entanglement entropy

initial state |ψ⟩ = |νeνeνµνµντ ⟩ → small entanglement entropy
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The evolution of a neutrino systems
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Asymptotic values
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Aditional conditions arising in 3-flavor approach

A density matrix should satisfy four conditions:

1 It is Hermitian,

2 Its trace is one,

3 It is positive semi-definite

4 ρ2 ≤ ρ.

3. Elementary symmetric polynomials formed from
eigenvalues of ρ non-negative
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Aditional conditions arising in 3-flavor approach

The characteristic equation of any matrix M with eigenvalues
xi can be written as

N∏
i=1

(x − xi) =

N∑
k=1

(−1)kxN−kek = 0

where ek are the elementary symmetric polynomials of the
eigenvalues xi. The elementary symmetric polynomials can in
turn be expressed in terms of power sums, pk =

∑
i xk

i . via the
equality ∑

k

ekxk = exp

(∑
k

(−1)k+1

k
pkxk

)
.

Note that pk = Tr (Mk).
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Aditional conditions arising in 3-flavor approach

e1 = Tr ρ = 1,

e2 =
1
2
− 1

2
Tr ρ2 =

N − 1
2N

− 1
N2 |P|

2,

e3 =
1
6
−1

2
(Trρ2)+

1
3
(Trρ3) =

(N − 1)(N − 2)
6N2 −N − 2

N3 |P|2+ 2
3N3 Q ,

That yields conditions |P|2 ≤ 3 and 2
3 Q ≥ |P|2 − 1 where

Q = Tr{λjλiλkPiPjPk}/2 = dijkPiPjPk

Necessary but not sufficient conditions
One needs the roots of the characteristic polynomial
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Aditional conditions arising in 3-flavor approach

The characteristic equation for the matrix A = λaPa

Tr A = 0

Tr A2 = 2|P|2

Tr A3 = 2Q .

Hence the characteristic equation for the matrix A is

x3 − |P|2x − 2
3

Q = 0 ,

Positive semidefinite matrix → all roots real and take values so
that (1 + xi) are positive.
All root real → discriminant is positive:

3
Q2

|P|6 < 1
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Aditional conditions arising in 3-flavor approach

In the 3-flavor, only certain solutions are allowed for |P|
reason: SU(3) and SO(8) are not isomorphic
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Conclusions
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• Entanglement can be underestimated in 2-flavor approach

• 3-flavor mixing depends on mass ordering

• Mixed initial states have more entanglement and mixing

• 3-flavor neutrino systems natural for qutrit-based quantum computers

Thank you for the attention!


