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Low frequency region (band?)
Most of the waveforms are similar in 
the first region of inspiral phase 
(mostly fn of chirp-mass)

High Frequency region 
(band?) 
Last part of inspiral differ a bit 
for different mergers source

https://link.springer.com/chapter/10.1007/978-3-030-43862-3_9


Solution: Filters - systems or processes used to remove unwanted components from a signal.

Matched Filtering



Convolution Operation

• Output of the matched filter is the convolution of its input signal 
(s(t)) with its impulse response (h(t)).

• Convolution is the integral of the product of two signals, one 
flipped and shifted.

•  the calculation of the overlap of the input signal S(T) with the 
reverse and pulse response H(T)





source

https://slideplayer.com/slide/15224854/


Time-Domain Method: SNR time series

The total cost per unit time of input data is
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Finite Block in Reality: FFT (example of overlapping)

template



Frequency-Domain Method:
The total cost per unit time of input data is

Approx: For N>>1, D>>M



Modern search pipeline (Gst-LAL): Reduction

Low frequency region 
(band?)
Most of the waveforms 
are similar in the first 
region of inspiral phase 
(mostly fn of chirp-mass)

High Frequency 
region (band?) 
Last part of inspiral 
differ a bit for 
different mergers sourc

e

• Orthonormal basis
• Non-uniform frequency
• Uses high pass and low pass filters, 
• Ordinary matched filtering SNR > 8.
•  SNR > 3.5  Ranking statistics

(Reduce risk of loosing signals)

https://link.springer.com/chapter/10.1007/978-3-030-43862-3_9
https://link.springer.com/chapter/10.1007/978-3-030-43862-3_9


Gst-LAL (LLOID): Cost Reduction

• The number of arithmetic operations per unit time of input data:

w.r.t. Frequency Domain: ~ 0.1



Grover’s Quantum Computing 
Algorithm



Original purpose was to solve the unstructured 
search problem faster than what can be done 
classically
References

• https://arxiv.org/abs/quant-ph/9605043
• https://arxiv.org/abs/quant-ph/9909040

https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9909040


1. Unstructured Search

• Example: 1 lock, 8 identical keys (N), Only one Key opens the lock

Best Case: 
Opens in first try

Worst Case: 
Opens in all 7 tries fails: 7 (=N-1)

• Criteria: Stop search if matching happens

• The upper bound on our computational 
complexity is



2. Grover's algorithm: 3 Steps 

Step 1: Probability initialization:
• It is to initialize our quantum state vector to represent the 

unstructured search problem.

Initially, there is an equal probability that any of the keys will be the right key, 
Our state vector is a superposition of all possibilities with uniform amplitude.



Grover's algorithm: 3 Steps 

Step 2: Search Operator:

• Functional form: 

•  Linear operator: Reflection operator

Step 3: Diffusion Operator: 
Reflection of our state vector about the mean amplitude



3. Reflections

Next Q: How can we represent flipping  with a more basic operation?
(e.g. subtraction or addition?)



Next Q: How to we generalize this operation using a linear operator on our 
vector?



Identity matrix twice the 
projector

Reflection 
operator

Next Q: Arbitrary alignment of x, y axis? 



Next Q: Can we generalize this approach to a higher dimensions? 



Original

Reflection

Same approach: 
Subtract each components 
twice

Next Q: Instead of expressing what has changed, can we express what does not 
change?



Reflection: Linear Algebra

Twice the 
projector of x Identity

Reflection 
operator
about X

Subtracting all other components



Step 1: Preparing Initial State

Step 1: Probability initialization:
• It is to initialize our quantum state vector to represent the 

unstructured search problem.

Initially, there is an equal probability that any of the keys will be the right key, 
Our state vector is a superposition of all possibilities with mean uniform amplitude.

Hadamard gates

Qubits in 
0-state

Puts them in a uniform 
superposition of all possible states



Equal probability/likelihood  of 
measuring zero or one
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four permutations 
of two qubits

possible permutation with replacement of 0 and 
1 that forms a string of length nPossible permutations.

Each of these permutations represents one 
state in our computational basis for n qubits



System: 4 Qubits: 16 possible states

Uniform superposition state of



Reflection operator flips the state we are searching for

Negative amplitude still gives us the same probability 
as a positive amplitude.
Therefore, reflection alone does not help much. 



Diffusion operator
: Reflection about mean axis every other bad state decreases slightly

When we flip across the mean, our good 
state amplitude increases more since 
there's a greater difference between its 
negative amplitude and the mean.

Then



Q: How many times should we continue these operations? 

If we amplify too much, our mean amplitude will become negative. This causes us to actually decrease the 
amplitude of our good states and we amplify the bad states again, which is quite interesting. 
Therefore, we have to figure out how many times we should run this Grover's operation before we stop to 
measure.



|Phi> contains a 
component of a 
good state |s>, i.e., 
not orthogonal
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After Applying: 
Search Operator



After Applying: 
Diffusion operator







Q: How many thetas will get us the closest to pi over 2 
when the amplitude of |s> will be the greatest?  
Maximize the search probability.



Q: what is theta? 



Scaling matters, 
and not coefficient





Old 

• Modern Classical vs Quantum?
• Using custom built FFT Chips: Classical cost can be reduced further.
• Initializing state: sum over qubit, and sum over templates (to be fixed!)
• Compact-binary coalescence (CBC): Modern classical algorithm wins
• Continuous Waveform (CW): Days long:  Quantum Computer might be 

necessary!

(Only for one block)



Open Questions:

• Finding the best way to compare the classical and quantum algorithm 
results: 

• Classical algorithm measures in the number of arithmetic operations per unit 
time of input data. 
Hence, Total cost should be evaluated by multiplying by the total observation 
time.

• Quantum computer measures total cost
• Are there any cost reduction method in quantum algorithm (similar to 

the modern pipeline orthonormal basis reduction?
• Is this quantum algorithm applicable to any other research fields of the 

other speakers? OR could any of your methods be useful to improve 
GW detection? 
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