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Nuclear Phase Diagram
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Nuclear potential

S. Gandolfi, J. Carlson, and Sanjay Reddy, PRC 85, 032801(R), (2012)
S.K. Bogner, R.J. Furnstahl, A. Schwenk Prog.Part.Nucl.Phys.65:94-147,2010

V (r⃗) =
∑

i Vi (r⃗) +
∑

i<j Vij (r⃗) +
∑

i<j<k Vijk (r⃗) + ...
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Nuclear Forces

J .W. Holt, N. Kaiser, W. Weise PPNP 73 (2013)

Nuclear Forces
▶ Phenomenological treatment: Mean-Field Theory , Interaction Models *

▶ Ab-initio: Chiral Effective Field Theory (χEFT) *

back
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χEFT

”Chiral effective field theory and nuclear forces” by Machleidt, Entem in Physics Reports Volume 503, Issue 1

▶ χEFT expansion in Q/Λb:

▶ Q ∼ mπ ∼ 100 MeV
(soft scale)

▶ Λb ∼ mρ ∼ 800 MeV
(hard scale)

▶ Long range physics given by pion
exchanges

▶ Short range physics parametrized by
low energy constants (LEC) fit to
low energy data

▶ Many body forces systematically
organized and related via the same
LECs
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Quantum Monte Carlo

Expectation of observables

⟨O⟩ =
Tr
[
e−βHO

]
Tr [e−βH ]

=
∑
s

(
⟨s|e−βH |s⟩∑
s⟨s|e−βH |s⟩

)
O(s)

=
∑
s

P(s)O(s)

⟨O⟩ ≈ 1

M

M∑
n=1

O(sn), sn ∼ P(s)

e−iτH = eβH −→ τ = iβ (Imaginary Time!)
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Auxiliary fields

R. L. Stratonovich, Soviet Physics Doklady 2, 416 (1957)
J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

Hubbard-Stratonovich

exp
(
− τ

2
Ô2

)
= 1√

2π

∫∞
−∞ dh exp

[
−

(
h2

2
+

√
−τhÔ

)]
, τ < 0

J. E. Hirsch, Phys. Rev. B 28, 4059 (1983)

Hirsch .

exp (−τ ρ̂µρ̂ν) =
∑

h=±1 P(h)eh(Aµρ̂µ+Aν ρ̂ν )

τ ϵ R

Higher order interactions are hard to represent!
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Hamiltonian terms as RBM Layers

Neural Layers ←→ Physical + Auxiliary fields

▶ Quantum + Classical =⇒ QMC + Classical Computing
E. Rrapaj, A. Roggero, PRE 103, 013302 (2021)

▶ Quantum + Quantum =⇒ Imaginary time + Quantum Computing
E. Rrapaj, E.Rule, arxiv 2403.17273
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Restricted Boltzmann Machine (RBM)

P. Smolensky, Explorations in the Microstructure of Cognition, Volume 1: Foundations. MIT Press. pp. 194–281. (1986)
N. LE Roux, Y. Bengio Neural Computation, Vol. 20, Issue: 6, June 2008

G. Hinton, Momentum vol. 9, 1, pages 296 (2010)
E. Rrapaj, A. Roggero, PRE 103, 013302 (2021)

▶ Energy Based Model Frbm (ρ̂, h) = B · ρ̂ + C · h +
∑M

µ=1

∑Nh
j=1 Wij ρ̂µhj

▶ Universal approximator Hrbm (ρ̂) = − log (Trh exp (−FRBM (ρ̂, h)))
Nh→∞−−−−−→ Hphysical (ρ̂)
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N - body coupling

E. Rrapaj, A. Roggero, PRE 103, 013302 (2021)

Algorithm

for (n = 2, n < N, n + = 1) do

Require: Hrbm (ρ̂) = Hn(ρ̂)
(1 hidden unit ↔ n visible ones ≡ couplings up to order n)

Pick a reference configuration ρ̂0

ln
(

Hrbm(ρ̂)
Hrbm(ρ̂0)

)
= ln

(
Hn(ρ̂)
Hn(ρ̂0)

)
Solve system of 2n − 1 linear equations for 2n − 1 couplings

Invert the equation for the highest coupling (order n)

set all lower order couplings of same order equal
end for
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Examples

E. Rrapaj, A. Roggero, PRE 103, 013302 (2021)

=σ1 σ2 σ1 σ2

h

Repulsive Spin Pair Interactions

e−Uαt(σ⃗1·σ⃗2) = e−3Uαt

8

∏3
d=1

∑1
hd=0 e

a(2hd−1)(σd⊗1−1⊗σd )

where tanh(a)2 = tanh

(
A(2)

4

)
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Nuclear effective field theory on the lattice

J.-W. Chen, D. Lee, and T. Schäfer, Phys. Rev. Lett. 93, 242302 (2004)

* figure from Serdar Elhatisari
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E. Rrapaj, A. Roggero, PRE 103, 013302 (2021)

Three Body Interaction on the Lattice

J.-W. Chen, D. Lee, and T. Schaefer, PRL. 93, 242302 (2004).

Zint = exp
(
−Uαt

2

∑
a,b ρ̂aρ̂b − Vαt

6

∑
a,b,c ρ̂aρ̂b ρ̂c

)
=

∫∞
−∞ dhP(h) exp

(
h
∑

a ρ̂a
)

Condition: V 2 < −2αtU3, −→ Impossible for Repulsive Interactions, U > 0

=

exp

−
Uαt

2

∑
a,b

ρ̂aρ̂b −
Vαt

6

∑
a,b,c

ρ̂aρ̂b ρ̂c

 = N
∑
h

eCh+h
∑3

µ=1 Wµρ̂µ

No Conditions on U,V
*
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Qubits: Introduction

▶ Qubit ≡ spin 1/2, two state system

▶ n qubits ≡ 2n states of n spin 1/2 particle system

▶ Gate ≡ unitary operator acting on qubits

▶ Only certain gates are available

1. One qubit gates −→ rotations in SU(2)

2. Two qubit gates −→ controlled rotations

▶ every other gate can be obtained from them

Ermal Rrapaj — RBM
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The state of one qubit

Generic State

|Ψ⟩ = cos( θ2 )|0⟩+ e−iϕ sin( θ2 )|1⟩

Z gate (phase flip)

Ẑ 1√
2
(|0⟩+ |1⟩) = 1√

2
(|0⟩ − |1⟩)

X gate (NOT)

X̂ |0⟩ = |1⟩, X̂ |1⟩ = |0⟩

RY gate

e−iα/2Ŷ = cos(α2 )Î − i sin(α2 )Ŷ
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Modifying the state of two qubits
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Gate Based Quantum Computing

▶ Initial state |Ψ0⟩ = |0, 0....⟩

▶ Apply unitary operators, e.g:

▶ Single qubit — rotation (e−iσx,y,zα)

▶ Two qubit — controlled operation (CNOT)

▶ Measure

Ermal Rrapaj — RBM
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Encode arbitrary operators

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of ComputingJune 2019Pages 193–204

Block Encoding

UB =
(
B/α ∗
∗ ∗

)
⇒ B = α (⟨1| ⊗ 1)UB (|1⟩ ⊗ 1)

▶ B is an arbitrary matrix embedded into a larger unitary matrix UB .
▶ It requires post-selection on the ancilla qubit.
▶ The application is probabilistic.
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Unitary RBM: Imaginary time propagator

E. Rrapaj, E.Rule, arxiv 2403.17273

Two body term

e−Kσ1σ2 =A
∑
h=±1

e−iW (σ1+sσ2)h,

=2A (1 ⊗ ⟨±1|) e−iW (σ1+sσ2)σ
x
h (1 ⊗ | ± 1⟩) , (block encoding)

𝜎𝜎1 𝜎𝜎2 𝜎𝜎3

ℎ1

+ ++

=

𝜎𝜎1 𝜎𝜎2 ℎ1

𝜎𝜎1 𝜎𝜎2

=

+

ℎ1

𝜎𝜎1

=𝜎𝜎1

(𝑎𝑎) (𝑏𝑏)

(𝑐𝑐)

𝜎𝜎1 𝜎𝜎3

𝜎𝜎2
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Unitary RBM: Quantum circuit

E. Rrapaj, E.Rule, arxiv 2403.17273

5

FIG. 1: Graphical representations of the RBM identities for (a) one-body, (b) two-body, and (c) three-body
interactions. Open circles denote non-unitary one-body interactions. Double lines represent non-unitary interactions
between two or more qubits. Single lines denote unitary interactions between visible and hidden qubits. In sub-figure

(c), the inset boxes show the induced one- and two-body couplings between the three visible qubits. Within each
inset, the ordering of the RBM indices is the same as above, although the labels have been omitted for simplicity.

restrict our focus to the two-qubit subsystem with “local”
Hamiltonian H = K(2)�1�2, then the two (degenerate)
ground states correspond to the anti-aligned case �1 =
�s�2, and the two (degenerate) excited states correspond
to the aligned case �1 = s�2.

If the system is initialized in the anti-aligned state,
then ↵ = 0 and Eq. (13) implies that the auxiliary en-
coding cannot fail. On the other hand, if the system is
initially in the aligned state, then ↵ = 1 and the proba-

bility of success is e�4|K(2)|. This represents the worst-
case scenario, as Ps ! 0 for large values of K(2). We
can view our procedure as a type of acceptance-rejection
algorithm: if the two-qubit subsystem is in the ground
state of the “local” Hamiltonian, then the result is ac-
cepted with 100% probability. If the subsystem is in an
excited state, then the sample is accepted with a prob-
ability that decreases exponentially with the size of the
local energy gap.

With every application of the ancilla method, the over-
all probability of success, being the product of the indi-
vidual probabilities, will decrease exponentially, which
is a typical feature of block-encoding methods. When
Eq. (10) is employed in a Trotter approximation scheme,
choosing a small time step to control the Trotter error
naturally leads to a small value of |K(2)|, which in turn
increases the probability of successfully implementing the
auxiliary qubit identity.

The circuit in Fig. 2 implements Eq. (10) using the
block-encoding method. The two-qubit rotation gates

q1 :

R�1�
x
h

(2W)q2 :
R�2�

x
h

(2sW)

h :

c : / ↵◆

FIG. 2: Quantum circuit diagram that implements the
two-body identity in Eq. (10) using block encoding.

are followed by a measurement of the auxiliary qubit h
for post-selection, and the value is stored in the classical
bit c.

In the case of a three-body interaction, the marginal-
ization ansatz is

exp


�
⇣
K(3)�1�2�3 + K

(2)
12 �1�2 + K

(2)
13 �1�3

+K
(2)
23 �2�3 + K

(1)
1 �1 + K

(1)
2 �2 + K

(1)
3 �3

⌘�

=A
X

h=±1

e�i(W1�1+W2�2+W3�3)h�iW0h

= 2A(1⌦h±1|)e�i(W1�1+W2�2+W3�3)�
x
h�iW0�

x
h(1⌦ | ± 1i).

(15)

Success probability: P = 1− (1− e−4|K |)α, α ≡ P(q1 = sq2), s = sign(K)

▶ Ground state: unaffected, P = 1

▶ Excited state: decreases exponentially, P = e−4|K |

Higher order operator

e−K
∏n

i σi = A U
[∑

h e
−iW (σz

n+s1)h
]
U†
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Example: Transverse Ising model

E. Rrapaj, E.Rule, arxiv 2403.17273

▶ H =
∑

i σ
z
i σ

z
i+1 −

∑
i σ

x
i

▶ |Ψ0⟩ = |+1x ⟩ |+1x ⟩ |+1x ⟩
▶ U(2)(dτ) = edτ/2

∑
i σ

x
i e−dτ

∑
i σ

z
i σ

z
i+1edτ/2

∑
i σ

x
i
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Deep Boltzmann Machines

E. Rrapaj, E.Rule, arxiv 2403.17273

DBM :ΨD(z⃗) =
∑

h⃗,d⃗ exp

[
i

(∑
i ai zi +

∑
i,j ziWijhj +

∑
i,j hiW

′
ij dj +

∑
i bihi +

∑
i b

′
i di

)]
L-DBM: ΨL(z⃗) =

∑
h⃗
exp

[
i

(∑
i aizi +

∑
i,j ziWijhj +

∑
i<j hiLijhj +

∑
i bihi

)]

𝜎1
𝑧 𝜎2

𝑧 𝜎3
𝑧

ℎ1 ℎ2 ℎ3

𝑑2

𝑑2

𝑑1

𝜎1
𝑧 𝜎2

𝑧 𝜎3
𝑧

ℎ1 ℎ2 ℎ3ℎ0

(𝑎) (𝑏)
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L-DBM is universal!

E. Rrapaj, E.Rule, arxiv 2403.17273

Example: Action of Hadamard Gate
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Summary

RBM Propagator

Real Couplings −→ Imaginary Time (Classical Computer)

Imaginary Couplings −→ Imaginary Time (Quantum Computer)

Complex Couplings −→ Complex Time (Quantum Computer)

L-DBM Wavefunction

Real Couplings −→ Classical

Imaginary Couplings −→ Quantum
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