Pair Production and Hadron Photoproduction Backgrounds at the Cool Copper Collider

Elias Mettner, Abdollah Mohammadi, Bryan Nee¹ Lindsey Gray² Dimitris Ntounis, Caterina Vernieri³

3 May 2024

University of Wisconsin-Madison
 Fermi National Accelerator Laboratory
 Stanford University and SLAC National Accelerator Laboratory

The Cool Copper Collider (C³)

C³ - 8 km Footprint for 250/550 GeV

- **1** Newly proposed e⁺e⁻ Higgs factory
- 2 E_{CM} : 250 GeV \rightarrow 550 GeV \rightarrow TeV-Scale
- ${f 8}$ Cold Copper Tech + Distributed RF Coupling ightarrow high acceleration gradient

From ILC to C³ Parameters

Key Differences in C^3 design against other linear colliders (ILC):

- **1** Accelerating Technology: Higher gradients more compact design.
- **2** Bunch Structure: 2 orders closer $+ \sim 3$ times smaller particle density.
- **3** Train Structure: higher train rep. freq., one order fewer bunches/train.

Beam and Machine Backgrounds

Various backgrounds originate in the BDS or the IR of C^3

Can deteriorate detector performance:

- **1** Beam-induced Backgrounds: secondary e^+e^- pairs, $\gamma\gamma \rightarrow$ hadrons
- **2** Machine-induced Backgrounds: halo muon, neutron production

This presentation will focus on the Beam-Induced Backgrounds

e⁺e⁻ Pair Background and Simulation

1 Beamstrahlung photons produce forward-boosted incoherent e^+e^- pairs

- Around 10^5 pairs / bunch crossing expected with C^3
- Most are deflected, but a small fraction reach detector
- 2 Simulation of background using GUINEA-PIG
 - Interaction w/ detector simulated by Geant4 thru DD4hep

Pair Background Occupancy

- Above: Visualization of occupancy within 5 tracker layers (hits/mm²)
- Background clearly impacts the entire first layer

Pair Background Occupancy

- Above: Fraction of cells unable to accumulate more data
- For comparison:
 - 1 ILC plot includes all backgrounds, C3 only incoherent pairs
 - **2** ILC bunch train is 10x longer than C3

Hadron Photoproduction Background and Simulation

- Beamstrahlung photons can also produce a hadronic background
 - $oldsymbol{1}$ rate $\sim 10^5$ smaller than the e^+e^- pair background
 - 2 More central than incoherent pairs, may still impact reconstruction
- PYTHIA used for simulation of processes above $\sqrt{s_{\gamma\gamma}} > 2 \text{ GeV}$
 - 1 Interfaced w/ detector through Geant4/DD4hep 2 $\sqrt{s_{\gamma\gamma}} < 2$ GeV: use WHIZARD/CIRCE (Slide 11)

Hadron Photoproduction Occupancy

- Above: Visualization of occupancy within 5 tracker layers (hits/mm²)
- Significantly more central than Pair Production background

Hadron Photoproduction Occupancy

- Above: Fraction of cells unable to accumulate more data + rescaling
- For comparison:
 - **1** Only $\gamma\gamma \rightarrow$ hadrons occupancy (Not overlaid with incoherent pairs) **2** Summed with incoherent pair occupancy: tail seen in ILC plot appears

- **()** $\sqrt{s_{\gamma\gamma}} < 2 \,\, {\rm GeV}$: Pythia does not simulate this part of the spectrum
- **2** Alternate workflow: GUINEA-PIG \rightarrow CIRCE \rightarrow WHIZARD
- **3** Previous simulation from GUINEA-PIG utilized
- 4 CIRCE: Output successfully tailored for C3 after some consideration
 - CIRCE had a bug when processing low-event GPig data
 - This was fixed in a later release
- **9** : WHIZARD: Successful simulation with C3 but further modifications needed

Key Takeaways

- $\mathbf{0}$ C³ is a compact, upgradable, and sustainable Higgs Factory proposal
- ② Contribution from e^+e^- pairs and $\gamma\gamma
 ightarrow\,$ hadron backgrounds is manageable
- **3** The ILC is a valid reference for C³ studies, with C³ \sim ILC /10.
- **4** Generation of full hadron background processes is slow but steady
- 6 Future Steps:
 - Finish hadron background generation
 - Expand data production and investigate further backgrounds
 - Utilize further ILC studies for reexamination within the context of C3

