

Phenomenology before and after the Standard Model Symposium University of Wisconsin-Madison

Fun in and Beyond the Standard Model

Peisi Huang University of Nebraska-Lincoln

On a Beautiful Summer Day, a Badger is Wondering

- Why is this acorn the size of a coffee mug (bigger than I expect)?
- Why do the shadows of the Terrace chairs, tables, and myself all look the same?
- Why there are three flavors of ice cream?
- How many generations are there?
- Why are we even here in the first place?
- How can I test my theories?

On a Beautiful Summer Day

- At the Terrace, I asked my share of those questions, with Vernon, and fellow badgers
- Of course, some badgers are smarter than others

SuperSymmetry!

- Why is this acorn bigger than I expect?
- Why do the shadows of the Terrace chairs, tables, and myself all look the same?
- Why there are three flavors of ice cream?
- How many generations are there?
- Why are we even here in the first place?
- How can we test those solutions?

On a Beautiful Summer Day

- Why is this acorn bigger than I expect?
- Why do the shadows of the Terrace chairs, tables, and myself all look the same?
- Why there are three flavors of ice cream?
- How many generations are there?
- Why are we even here in the first place?
- How can we test those solutions?

Some Acorns are Big

- In 2012, the Higgs boson is discovered, and its mass is measured ~ 124 GeV
- Hmm, a bit too heavy for S
- With Howie, Vernon, Azar Xerxes Tata, we showed ho SUSY spectrum can be generatively.
- No large cancellation to ge boson mass

σ

CMS, 2012

Some Acorns are Big, Some Bosons are Heavy

Unique Signatures

- Usual gluino, squark, stop searches
- Light (almost degenerate) Higgsinos, soft dilepton /trilepton + missing energy, ~ 200 GeV

Gluinos, Ist and 2nd gen squarks ~ Multi-TeV

Stops, ~ TeV

Winos, ~ few hundreds GeV

Higgsinos, ~ 200 GeV

Future Lepton/Muon Colliders

- For a lepton/muon collider with $\sqrt{s} = 500 \text{ GeV}$, the EW-ino pair production cross section is around few hundred fb.
- Signatures

500

ם

- Soft multi-jet + missing energy
- Soft lepton + jet + missing energy
- Soft dilepton + missing energy
- SM backgrounds such as WW can be suppressed by $m = \sqrt{E^2 p^2}$ distributions
- The cross section varies with the beam polarization, but not as steep as wino pair

Unique Signatures

H. Baer, V. Barger, P.H, D. Mickelson, A. Mustafayev, W. Sreethawong, and X. Tata 2013

- Wino pair production same sign diboson + missing energy
- More powerful reach for $m_{1/2}$ than gluino pair production

Stops, ~ TeV Winos, ~ few hundreds GeV

Gluinos, Ist and

2nd gen squarks ~ Multi-TeV

Another Boson Appears to be Heavy

• In 2012, W mass is measured to be $80,385\pm15$ MeV

 $M_W^{\text{exp}} - M_W^{\text{SM}} = 24 \pm 15 \text{ MeV.}$

 With Vernon, Wai-Yee, and M. Ishida, we analyze its implication to the SUSY spectrum

$$\delta M_W \simeq \frac{M_W}{2} \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho_0,$$

$$\Delta \rho_0 = \frac{3G_F}{8\sqrt{2}\pi^2} \left[-s_{\tilde{t}}^2 c_{\tilde{t}}^2 F_0(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2) + c_{\tilde{t}}^2 F_0(m_{\tilde{t}_1}^2, m_{\tilde{b}_L}^2) + s_{\tilde{t}}^2 F_0(m_{\tilde{t}_2}^2, m_{\tilde{b}_L}^2) \right] (10$$

$$F_0(a, b) \equiv a + b - \frac{2ab}{a - b} \ln \frac{a}{b}$$

V. Barger, PH, M. Ishida, W.-Y. Keung 2012

Fast Forward to 10 Years Later

- In 2022, CDF updated their W mass measurement $M_W^{\text{CDF}} = 80.4335 \pm 0.0094 \text{ GeV},$
- With Vernon, Cash Hauptmann, and Wai-Yee, we revisited the problem. $g_{\mu} = 2$
- This time, just the tree-level
- Extend the SM gauge group with a new U(1) group. The "Z boson" is now a linear combination of Z and Z'. The W mass is shifted at the tree-level

A Concrete Model

• Consider *E*₆ models,

 $E_6 \to SO(10) \times U(1)_{\psi}$ $\to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$ $\to SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{\chi} \times U(1)_{\psi}.$

• Two additional gauge bosons, Z', and Z''

 $Z' = Z_{\chi} \cos \theta_{E_6} + Z_{\psi} \sin \theta_{E_6}$ $Z'' = -Z_{\chi} \sin \theta_{E_6} + Z_{\psi} \cos \theta_{E_6}.$

- Also allow for kinetic mixing, $\frac{\sin \chi}{2} B_{\mu} Z'^{\mu}$
- Assume only the lighter state around the TeV scale

Modifications to M_W

$$\delta M_W \approx \frac{1}{2M_W} \frac{c_W^4}{c_W^2 - s_W^2} \xi^2 \left(M_{Z'}^2 - M_Z^2 \right)$$

Only depends on $M_{Z'}$ and Z-Z' mixing ξ

- Constraints from direct Z' searches
- Precision Z-boson measurements

V. Barger, C. Haumptmann, PH, W.-Y. Keung 2023 ¹³

Z' Searches

- Direct constraints from pp -> Z' -> II at the LHC
- Depends on the Z' mass, kinetic mixing, and $\theta_{\rm E6}$. Z's lighter than 5.5 TeV are highly constrained.
- Z pole constrains are easily satisfied

Higgs Mass

Extend the SM gauge group -> additional D-term contribution

 $\frac{g_{Z'}^2}{2}(Q'_{H_d}|H^0_d|^2 + Q'_{H_u}|H^0_u|^2 + Q'_s|S|^2)^2$

Increase the Higgs mass at the tree level

• As in the NMSSM, λSH_uH_d in the super potential

Increase the upper bound of the Higgs mass

• Upper bound of the Higgs mass,

 $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$ $+ g_{Z'}^2 v^2 (Q'_{H_d} \cos^2 \beta + Q'_{H_u} \sin^2 \beta)^2.$

• Higgs mass receives extra contribution at the tree level -> stop sector is less constrained V. Barger, C. Haumptmann, PH, W..Y.. Keung 2023¹⁵

On a Beautiful Summer Day

- Why is this acorn bigger than I expect?
- Why do the shadow of the Terrace chairs, tables, and myself look the same?
- Why there are three flavors of ice cream?
- How many generations are there?
- Why are we even here in the first place?
- How can we test those solutions?

He Thinks Hard on His Way Home

Leptogenesis

Generate the Baryon asymmetry through the lepton asymmetry

- 1. The Right Handed Neutrinos, decay (CP violating) asymmetrically $\epsilon_{i} = \frac{\sum_{j} \Gamma\left(\nu_{R}^{i} \to \ell_{L}^{j} H\right) - \Gamma\left(\nu_{R}^{i} \to \bar{\ell}_{L}^{j} H^{*}\right)}{\sum_{j} \Gamma\left(\nu_{R}^{i} \to \ell_{L}^{j} H\right) + \Gamma\left(\nu_{R}^{i} \to \bar{\ell}_{L}^{j} H^{*}\right)} \propto \operatorname{Im}\left[\left(\lambda_{D} \lambda_{D}^{\dagger}\right)^{2}\right] \qquad \begin{array}{l} \text{M. Fukugita, T. Yanagida, 1986} \\ \text{Luty 1992} \end{array}$
- 2. Part of the generated asymmetry will be converted to a baryon asymmetry (about order one, detailed calculation gives 28/79)

Difficulties in Leptogenesis

3. Inverse decays and scattering wash out the generated asymmetry

Only 1% of the generated asymmetry will survive

How to fix this?

Difficulties in Leptogenesis

• Naively, the strong washout effect is unavoidable

- The RHN decouples from the thermal bath at $T \sim M$
- What if the cosmic temperature changes discontinuously?

20

T~M

Difficulties in Leptogenesis

- The RHN decouples from the thermal bath at T~M
- Only if the cosmic temperature changes discontinuously, the RHN decays, generates the lepton asymmetry. Then the temperature falls T<<M, the washout effects are Boltzmann suppressed
- All the generated asymmetry is survived

T changes discontinuously

T<<M

T~M

Solution #1 – Mass Jump

• The cosmic temperature can not change discontinuously, but the mass of the RHNs can -- first-order PT!

$$\mathcal{L} \supset -\sum_{i,j} \frac{1}{2} \left(\lambda_R^{ij} \bar{\nu}_R^{i,c} \nu_R^j \frac{\phi}{\sqrt{2}} + \text{h.c.} \right),$$

- The RHNs are massless in the old vacuum
- During the PT, the RHN gains mass M₁ – mass changes discontinuously
- If M₁ >> Tp , the washout effects are Boltzmann suppressed

Wait $-M_1 >> T_p$, How Can That Happen?

$M_1 >> T_p$, how?

- If the phase transition is very strong, the bubble wall can be relativistic
- Although in the plasma frame, RHNs are in thermal equilibrium, they have very high energy in the wall frame
- They can penetrate into the true vacuum, and decay immediately

Solution #1 – Mass Jump

1_n << IVI₁

$$\mathcal{L} \supset -\sum_{i,j} \frac{1}{2} \left(\lambda_R^{ij} \bar{\nu}_R^{i,c} \nu_R^j \frac{\phi}{\sqrt{2}} + \text{h.c.} \right),$$

At at high temperature, the universe is in the symmetric phase, RHNs are massless, and in thermal equilibrium

- Phase Transition. The scalar field phi acquires a vacuum expectation value, and the RHN gains mass M₁ in the true, new vacuum
- M₁ >> T_p, RHN decays, generates the asymmetry
- Ultra relativistic bubble walls, RHNs penetrate into the true vacuum
- U(1)_{B-L} models can do the job

Washouts are suppressed!

Gravitational Wave signal

 $\sim O(30)$ enhancement

25

Solution #2 – T-Dep Couplings

• Naively, the strong washout effect is unavoidable

- The RHN decouples from the thermal bath at $T \sim M$
- The washout processes are only active at a much lower T

T∼N∕

Solution #2 – T-Dep Couplings

• Naively, the strong washout effect is unavoidable

- \bullet The RHN decouples from the thermal bath at T~M
- The washout processes are only active at a much lower T
- Wash out is Boltzmann suppressed
- All the generated asymmetry is survived

T~M

Solution #2 – T-Dep Couplings

• Take

$$\lambda_{D,s}(z) = \begin{cases} b_{s} \lambda_{D}, & z < z_{s} \\ \lambda_{D}, & z \ge z_{s} \end{cases}$$

$$\mathcal{L} \supset -\sum_{i,j} \left(\lambda_D^{ij} ar{\ell}_L^i ilde{H}
u_R^j + ext{h.c.}
ight)$$
 $z \ \equiv \ M_1/T$

28

Wash out is turned on when it is already Boltzmann suppressed PH, T. Xu 2023

RHNs are Pretty Heavy

 The Davidson-Ibarra bound, assuming there is a mass hierarchy between the RHNs, for a given mass of the lightest one, the upper bound for CP violation

$$|\epsilon_1| \leqslant \frac{3}{8\pi} \frac{M_1(m_3 - m_1)}{v_{\rm EW}^2} \approx 10^{-5} \times \left(\frac{M_1}{10^{11} \text{ GeV}}\right) \left(\frac{m_\nu}{0.05 \text{ eV}}\right)$$

Davidson and Ibarra, 1992

- In the previous two scenarios, the RHNs are pretty heavy, at least ~O(10⁹) GeV – only handles are GW signals
- Possible way to bring the mass scale down?

Scenario #3 -- Neutrinophilic 2HDM + Resonant Enhancement

• Resonant leptogenesis

See for example, Flanz et al, 1996, Pilaftsis, 1997, Dev et al, 2017

- Enhance the CP asymmetry through the interference between nearly degenerate RHN states
- Possible to have M_{1,2} around the TeV scale
- Cost, $\Delta M/M \sim 10^{-9}$
- Neutrinophilic Two-Higgs Doublet Model $\epsilon_{1\alpha} \sim \frac{M_1}{v^2}$
 - Introduce a second Higgs doublet, with vev $v_2 \ll v_{SM}$
 - To avoid strong $\Delta L = 2$ washout,

$$\Gamma_{\Delta L=2} \sim \frac{T}{v_2^4} \sum m_{\nu_i}^2 \implies M_N \gtrsim 10^5 \text{GeV}$$

Scenario #3 -- Neutrinophilic 2HDM + Resonant Enhancement

 $\nu 2 {\rm HDM}$ + Resonance Enhancement \checkmark

Kairui Zhang, Pheno 2025

- Combined framework enhancements:
 - Balances strong Yukawas from resonant enhancement with $\Delta L = 2$ washout constraints from $\nu 2$ HDM
 - Achieves much lower $M_i \sim {
 m TeV}$
 - Small $v_2 \ll v_{\rm SM}$ reduces tuning to $\Delta M/M \sim 10^{-2} 10^{-3}$

Scenario #3 – Neutrinophilic 2HDM + Resonant Enhancement

• N_2 and N_3 at the TeV scale with

 $\Delta M/M \sim 10^{-2} - 10^{-3}$

• Mass pattern,

 $(\mathcal{O}(S), M - \mathcal{O}(S), M + \mathcal{O}(S))$

- A natural light DM candidate
- N₁ decouples after sphaleron freeze-out. BAU is already frozen when N₁ becomes thermally important
- Rich pheno colliders, light DM

Kairui Zhang, Pheno 2025

How Many Generations?

- Natural SUSY: Vernon, Howie (1st), Azar Mustafayev (2nd, Baer), and Xerxes Tata(1st)
- Higgs mass and W mass: Vernon, Wai-Yee(1st), Cash Haumptmann(2nd, PH), M. Ishida
- Leptogenesis: Ke-Pan Xie (2nd, PH), Tao Xu (3rd, T. Han-> K. Wang), Kairui Zhang (1st + 2nd, Baer)

On Wisconsin!

- I had a lot of fun with particles in and beyond the SM.
- I am a strong believer of physics beyond the SM (How sure I am? I name my older daughter after that)
- I had my best five years in life at the phenomenology institute
- At the phenomenology institute, I learned some physics, discovered what I want to do in life, met the best mentors, and made life-long friends (How much I appreciate the pheno institute? I wear my pheno hat to every Wisconsin vs Nebraska game)
- On Wisconsin!