Dark GNSB

(Dark gauge-mediated supersymmetry breaking)

based on JHEP 05 (2025) 052, with Brian Batell, Yechan Kim, Jiheon Lee

NISCONSIN-MADISON

Hye-Sung Lee Korea Advanced Institute of Science and Technology

Phenomenology Before and After the Standard Model Madison, Wisconsin / June 5, 2025

Extension of the Standard Model

Extension of the Standard Model

Supersymmetry + Dark photon

Many studies on the dark photon in the Supersymmetry framework.

Yet, focus was on the small kinetic mixing (ϵ) scenario.

 $-\frac{\epsilon}{2}\mathbb{B}_{\mu
u}\mathbb{X}^{\mu
u}$

- [10] K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].
- [11] D. Suematsu, SUSY breaking based on Abelian gaugino kinetic term mixings, JHEP 11 (2006) 029 [hep-ph/0606125] [INSPIRE].
- [12] E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].
- [13] N. Arkani-Hamed and N. Weiner, LHC Signals for a SuperUnified Theory of Dark Matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].
- [14] M. Baumgart et al., Non-Abelian Dark Sectors and Their Collider Signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].
- [15] C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic Mixing as the Origin of Light Dark Scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].
- [16] D.E. Morrissey, D. Poland and K.M. Zurek, Abelian Hidden Sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].
- [17] A. Arvanitaki et al., String Photini at the LHC, Phys. Rev. D 81 (2010) 075018
 [arXiv:0909.5440] [INSPIRE].
- [18] T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].
- [19] Z. Kang et al., Light Dark Matter from the $U(1)_X$ Sector in the NMSSM with Gauge Mediation, JCAP 01 (2011) 028 [arXiv:1008.5243] [INSPIRE].
- [20] Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC Signatures of a Minimal Supersymmetric Hidden Valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].
- [21] M. Baryakhtar, N. Craig and K. Van Tilburg, Supersymmetry in the Shadow of Photini, JHEP 07 (2012) 164 [arXiv:1206.0751] [INSPIRE].
- [22] H.M. Lee, Gauged U(1) clockwork theory, Phys. Lett. B 778 (2018) 79 [arXiv:1708.03564]
 [INSPIRE].
- [23] S. Andreas, M.D. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, Phys. Rev. D 87 (2013) 025007 [arXiv:1109.2869] [INSPIRE].
- [24] B. Kors and P. Nath, A Supersymmetric Stueckelberg U(1) extension of the MSSM, JHEP 12 (2004) 005 [hep-ph/0406167] [INSPIRE].
- [25] D. Feldman, B. Kors and P. Nath, Extra-weakly Interacting Dark Matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].
- [26] D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].
- [27] A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): Cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [INSPIRE].
- [28] K.M. Zurek, Multi-Component Dark Matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [INSPIRE].
- [29] A. Katz and R. Sundrum, Breaking the Dark Force, JHEP 06 (2009) 003 [arXiv:0902.3271]
 [INSPIRE].
- [30] D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].
- [31] P. Barnes, Z. Johnson, A. Pierce and B. Shakya, Simple Hidden Sector Dark Matter, Phys. Rev. D 102 (2020) 075019 [arXiv:2003.13744] [INSPIRE].
- [32] A. Pierce and B. Shakya, Gaugino Portal Baryogenesis, JHEP 06 (2019) 096
 [arXiv:1901.05493] [INSPIRE].

Dark photon parameter space

Kinetic mixing ϵ is severely constrained by many experiments. Dark photon effects in the supersymmetry were somewhat limited.

Dark photon parameter space

In the massless limit, ϵ is unconstrained unless there are dark sector particles with induced (milli) electric charges. The kinetic mixing can be rotated away by field redefinitions, without mass mixing.

This work:

GMSB scenario extended by U(1) dark gauge symmetry with large kinetic mixing allowed by the massless dark photon

My PhD thesis in Madison (2005): "Phenomenology of the U(1)'-extended MSSM"

Massless dark photon in SUSY

Supersymmetric kinetic mixing of $U(1)_B$ and $U(1)_{dark}$

$$\begin{split} \mathcal{L} \supset \int d^2\theta \left(\frac{1}{4} \hat{\mathcal{W}}_{\mathbb{B}} \hat{\mathcal{W}}_{\mathbb{B}} + \frac{1}{4} \hat{\mathcal{W}}_{\mathbb{X}} \hat{\mathcal{W}}_{\mathbb{X}} + \frac{\epsilon}{2} \hat{\mathcal{W}}_{\mathbb{B}} \hat{\mathcal{W}}_{\mathbb{X}} \right) + h.c. \\ &= -\frac{1}{4} \mathbb{B}_{\mu\nu} \mathbb{B}^{\mu\nu} - \frac{1}{4} \mathbb{X}_{\mu\nu} \mathbb{X}^{\mu\nu} - \frac{\epsilon}{2} \mathbb{B}_{\mu\nu} \mathbb{X}^{\mu\nu} \\ &+ i \tilde{\mathbb{B}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{B}} + i \tilde{\mathbb{X}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{X}} + (i \epsilon \tilde{\mathbb{B}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{X}} + h.c.) \\ &+ \frac{1}{2} D_{\mathbb{B}}^2 + \frac{1}{2} D_{\mathbb{X}}^2 + \epsilon D_{\mathbb{B}} D_{\mathbb{X}}, \end{split}$$

Massless dark photon in SUSY

Supersymmetric kinetic mixing of $U(1)_B$ and $U(1)_{dark}$

$$\begin{split} \mathcal{L} \supset \int d^2 \theta \left(\frac{1}{4} \hat{\mathcal{W}}_{\mathbb{B}} \hat{\mathcal{W}}_{\mathbb{B}} + \frac{1}{4} \hat{\mathcal{W}}_{\mathbb{X}} \hat{\mathcal{W}}_{\mathbb{X}} + \frac{\epsilon}{2} \hat{\mathcal{W}}_{\mathbb{B}} \hat{\mathcal{W}}_{\mathbb{X}} \right) + h.c. \\ &= -\frac{1}{4} \mathbb{B}_{\mu\nu} \mathbb{B}^{\mu\nu} - \frac{1}{4} \mathbb{X}_{\mu\nu} \mathbb{X}^{\mu\nu} - \frac{\epsilon}{2} \mathbb{B}_{\mu\nu} \mathbb{X}^{\mu\nu} \\ &+ i \tilde{\mathbb{B}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{B}} + i \tilde{\mathbb{X}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{X}} + (i \epsilon \tilde{\mathbb{B}}^{\dagger} \sigma^{\mu} \partial_{\mu} \tilde{\mathbb{X}} + h.c.) \\ &+ \frac{1}{2} D_{\mathbb{B}}^2 + \frac{1}{2} D_{\mathbb{X}}^2 + \epsilon D_{\mathbb{B}} D_{\mathbb{X}}, \end{split}$$

Gauge interaction after kinetic diagonalization

Gauge interaction terms

1 - - - 11-

$$\begin{pmatrix} \hat{\mathbb{X}} \\ \hat{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\epsilon}{\sqrt{1 - \epsilon^2}} \\ 0 & \frac{1}{\sqrt{1 - \epsilon^2}} \end{pmatrix} \begin{pmatrix} \hat{X} \\ \hat{B} \end{pmatrix}$$

(our basis)

$$\mathcal{L} \supset g'_Y Y J^{\mu}_Y \mathbb{B}_{\mu} + g_D D J^{\mu}_D \mathbb{X}_{\mu}$$

$$= \left[-\frac{g_D \epsilon}{\sqrt{1 - \epsilon^2}} D J^{\mu}_D + g_Y Y J^{\mu}_Y \right] B_{\mu} + g_D D J^{\mu}_D X_{\mu},$$
(our black)

$$Y_{\text{eff}} = Y - \frac{g_D}{g_Y} \frac{\epsilon}{\sqrt{1 - \epsilon^2}} D$$

Hypercharge is effectively modified by the kinetic mixing.

Soft mass terms in Dark GMSB

The messengers (ψ , $\tilde{\psi}$) are charged under the SM and dark gauge symmetries. They couple to the dark photon (X) and dark photino (\tilde{X}), which mix with B and \tilde{B} with large kinetic mixing, giving additional contribution to scalar masses and neutralino masses.

Scalar masses

$$(g_Y Y_\phi)^2 (g_Y Y_\Psi)^2 \to (g_Y Y_\phi)^2 \left(g_Y Y_\Psi - \frac{g_D \epsilon D_\Psi}{\sqrt{1 - \epsilon^2}}\right)^2$$

The effect of ϵ appears as the hypercharge shift for the messenger fields.

$$\begin{split} m_{H_{i}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(2)} \frac{3g_{2}^{4}}{8} + N_{\text{U}(1)} g_{Y}^{2} Y_{H_{i}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] .\\ m_{\tilde{q}_{L}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(3)} \frac{2g_{3}^{4}}{3} + N_{\text{SU}(2)} \frac{3g_{2}^{4}}{8} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{q}_{L}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] ,\\ m_{\tilde{u}_{R}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(3)} \frac{2g_{3}^{4}}{3} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{u}_{R}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] ,\\ m_{\tilde{d}_{R}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(3)} \frac{2g_{3}^{4}}{3} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{d}_{R}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] ,\\ m_{\tilde{\ell}_{L}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(3)} \frac{3g_{2}^{4}}{3} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{d}_{R}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] ,\\ m_{\tilde{\ell}_{L}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(2)} \frac{3g_{2}^{4}}{8} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{\ell}_{L}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] ,\\ m_{\tilde{\ell}_{R}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{\ell}_{R}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] . \end{split}$$

Slepton spectrum

$$\begin{split} m_{\tilde{\ell}_{L}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{SU}(2)} \frac{3g_{2}^{4}}{8} + N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{\ell}_{L}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right] \\ m_{\tilde{\ell}_{R}}^{2}(g_{D},\epsilon) &= \sum_{\Psi} \tilde{M}_{\text{mess},1}^{2} \left[N_{\text{U}(1)} g_{Y}^{2} Y_{\tilde{\ell}_{R}}^{2} \left(g_{Y} Y_{\Psi} - \frac{g_{D} \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^{2}}} \right)^{2} \right]. \end{split}$$

EWSB

The scalar potential of neural Higgs fields

$$\begin{split} V(H_u^0, H_d^0) &= \sum_{i=u,d} \left(|\mu|^2 + m_{H_i}^2 \right) |H_i^0|^2 - \left(b_\mu H_u^0 H_d^0 + \text{h.c.} \right) \\ &+ \frac{1}{8} (g_Y^2 + g_2^2) \left(|H_u^0|^2 - |H_d^0|^2 \right)^2. \end{split}$$

At the potential minimum, EWSB dictates

$$b_{\mu} = \frac{\sin(2\beta)}{2} \left[2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2 \right],$$
$$|\mu|^2 = -\frac{m_Z^2}{2} - \frac{m_{H_u}^2 + m_{H_d}^2}{2} + \frac{m_{H_u}^2 - m_{H_d}^2}{2\cos(2\beta)}.$$

 $m_{H_u}^2 \text{ and } m_{H_d}^2 \text{ are also altered in Dark GMSB.}$ $m_{H_i}^2(g_D, \epsilon) = \sum_{\Psi} \tilde{M}_{\text{mess},1}^2 \left[N_{\text{SU}(2)} \frac{3g_2^4}{8} + N_{\text{U}(1)} g_Y^2 Y_{H_i}^2 \left(g_Y Y_\Psi - \frac{g_D \epsilon D_\Psi}{\sqrt{1 - \epsilon^2}} \right)^2 \right]$

μ parameter

In Dark GMSB, required $|\mu|$ values for the EWSB depends on ϵ . Thus, ϵ is constrained by the EWSB condition (from $|\mu|^2 > 0$). (It does not solve the μ -problem.)

Dark photino (\tilde{X}) / Bino (\tilde{B}) masses

Hypercharge shift for the messenger fields

$$(g_Y Y_\Psi)^2 \rightarrow \left(g_Y Y_\Psi - \frac{g_D \epsilon D_\Psi}{\sqrt{1 - \epsilon^2}}\right)^2$$

$$\mathbf{M}_{\tilde{N}}^{2 \times 2} = \begin{pmatrix} M_D & M_K \\ M_K & M_1 \end{pmatrix}$$
$$\{\tilde{X} & \tilde{B}\}$$

$$M_D(g_D) = \sum_{\Psi} N_{\mathrm{U}(1)} g_D^2 D_{\Psi}^2 \tilde{M}_{\mathrm{mess},2},$$

$$M_K(g_D, \epsilon) = \sum_{\Psi} N_{\mathrm{U}(1)} g_D D_{\Psi} \left(g_Y Y_{\Psi} - \frac{g_D \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^2}} \right) \tilde{M}_{\mathrm{mess},2},$$

$$M_1(g_D, \epsilon) = \sum_{\Psi} N_{\mathrm{U}(1)} \left(g_Y Y_{\Psi} - \frac{g_D \epsilon D_{\Psi}}{\sqrt{1 - \epsilon^2}} \right)^2 \tilde{M}_{\mathrm{mess},2},$$

Neutralino mass matrix

Exotic Higgs decay

The invisible $h(125) \rightarrow \tilde{N}_0 \tilde{N}_0$ decay signal could be probed in future Higgs factory (e.g. ILC).

Summary

Supersymmetry + U(1) is always an interesting extension of the SM.

Dark GMSB with large kinetic mixing, allowed by a massless dark photon leads to significant changes in the superpartner spectrum from conventional GMSB.

- Thank you -

back-up

Massless dark photon

$$\begin{pmatrix} \hat{\mathbb{X}} \\ \hat{\mathbb{B}} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\epsilon}{\sqrt{1 - \epsilon^2}} \\ 0 & \frac{1}{\sqrt{1 - \epsilon^2}} \end{pmatrix} \begin{pmatrix} \cos \omega - \sin \omega \\ \sin \omega & \cos \omega \end{pmatrix} \begin{pmatrix} \hat{X} \\ \hat{B} \end{pmatrix},$$

For massless X case, ω is free to choose.

For massive X case, $\sin \omega = -\epsilon$ is determined to keep B massless.

(Our basis)
$$\sin \omega = 0$$
, $\cos \omega = 1$.

$$\mathcal{L} \supset g'_Y Y J^{\mu}_Y \mathbb{B}_{\mu} + g_D D J^{\mu}_D \mathbb{X}_{\mu}$$
$$= \left[-\frac{g_D \epsilon}{\sqrt{1 - \epsilon^2}} D J^{\mu}_D + g_Y Y J^{\mu}_Y \right] B_{\mu} + g_D D J^{\mu}_D X_{\mu},$$

Scenario	Superfield	Component fields	Representation
I	$\hat{\Psi}_1 \\ \hat{ar{\Psi}}_1 \\ \hat{\Psi}_2 \\ \hat{ar{\Psi}}_2$	$egin{array}{lll} \psi_1, \widetilde{\psi}_1 \ ar{\psi}_1, ar{ar{\psi}_1} \ \psi_2, ar{\psi}_2 \ ar{\psi}_2, ar{ar{\psi}_2} \end{array}$	$egin{aligned} & (3, 1, -1/3, D_\Psi) \ & (ar{3}, 1, 1/3, -D_\Psi) \ & (1, 2, 1/2, D_\Psi) \ & (1, 2, -1/2, -D_\Psi) \end{aligned}$
II	$\hat{\Psi}$ $\hat{ar{\Psi}}$	$\psi, \widetilde{\psi} \ \overline{\psi}, \widetilde{\overline{\psi}}$	$({f 3},{f 2},1/6,D_\Psi) \ (ar{f 3},{f 2},-1/6,-D_\Psi)$

Table 1. Messenger representations for two distinct scenarios, which we will discuss in this paper. We denote the representation as $(SU(3)_C, SU(2)_L, U(1)_Y, U(1)_D)$. We assume the messenger fields are in a vector-like representation to avoid the gauge anomaly. Scenario I employs a SU(5) complete representation (the fundamental $\mathbf{5} + \mathbf{\bar{5}}$), whereas Scenario II utilizes a SU(5) incomplete representation. For concreteness, we fix $D_{\Psi} = 1$.

$F/M_{\rm mess}$	$M_{\rm mess}$	g_D	aneta	$F/M_{\rm mess}^2$
$800\mathrm{TeV}$	$1200\mathrm{TeV}$	0.4	15	2/3

Table 2. The parameters listed in this table are utilized for illustrations unless specifically stated otherwise. This parameters setup is fit to obtain the observed SM-like Higgs mass of $m_{h^0} = 125 \text{ GeV}$.

Dark GMSB Spectrums

NLSP (\tilde{N}_0) decay rate

Reheating temperature vs lightest messenger mass

Landau poles constraints

In the grey region, the Landau poles appear below 100 $M_{\rm mess}$.

$$g_{\text{eff}} = g_D \epsilon / \sqrt{(1 - \epsilon^2)}.$$

Higgs mass

In the dark GMSB, light Higgs mass variation is less than O(0.1) GeV when considering constraints on g_D and ϵ from EWSB.