### MASSIVE NEUTRINOS IN 2025

Concha Gonzalez-Garcia (YITP-Stony Brook & ICREA-University of Barcelona) Phenomenology Before and After the Standard Model a symposium in honor of Vernon Barger Madison, June 5, 2025





### **Data to be Described**

#### Concha Gonzalez-Garcia

### Solar experiments

- Chlorine total rate, 1 data point.
- Gallex & GNO total rates, 2 points.
- SAGE total rate, 1 data point.
- SK1 E and zenith spect, 44 poins.
- SK2 E and D/N spect, 33 points.
- SK3 E and D/N spect, 42 points.
- SK4 2970-day E spectrum and D/N asym, 46 points.
- SNO combined analysis, 7 points.
- Borexino Ph-I 740.7-day low-E spect 33 points.
- Borexino Ph-I 246-day high-E spect ,6 points.
- Borexino Ph-II 1292-day low-E spect, 192 points.
- Borexino Ph-III 1433-day low-E spect, 120 points.

### **Reactor experiments**

- KamLAND DS1,DS2&DS3 spectra with Daya-Bay fluxes 69 points
- DChooz FD/ND ratios with 1276-day (FD) and 587-day (ND) exposures , 26 points.
- Daya-Bay 3158-day EH1,EH2, EH3 spectra ,78 points.
- Reno 2908-day FD/ND ratios 45 points.

### Atmospheric experiments

- IceCube/DeepCore 2019 3-year data.
- IceCube/DeepCore 2014 9,3-year data ( $\chi^2$  table provided 1
- K I-V 484 kton-years(  $\chi^2$  table provided by SK)

### Accelerator experiments

- MINOS  $10.71 \times 10^{20}$  pot  $\nu_{\mu}$ -disapp data, 39 poins.
- MINOS 3.36  $\times$   $10^{20}$  pot  $\bar{\nu}_{\mu}$  -disapp data , 14 points.
- MINOS  $10.6 \times 10^{20}$  pot  $\nu_e$ -app data , 5 points.
- MINOS  $3.3\times 10^{20}~{\rm pot}~\bar{\nu}_e\text{-app}$  data , 5 points.
- + T2K 21.4  $\times$   $10^{20}$  pot  $\nu_{\mu}$  -disapp data, 28 points.
- T2K  $21.4 \times 10^{20}$  pot  $\nu_e$ -app data, 9 points CCQE and 7 p
- T2K  $16.3 \times 10^{20}$  pot  $\bar{\nu}_{\mu}$ -disapp, 19 points.
- T2K  $16.3 \times 10^{20}$  pot  $\bar{\nu}_e$ -app, 9 points.
- + NOuA 26.6 imes 10<sup>20</sup> pot  $u_{\mu}$ -disapp data , 21 points.
- NOvA 26.6  $\times$   $10^{20}$  pot  $\nu_e$  -app data , 15 points.
- NO $\nu$ A 12.5 × 10<sup>20</sup> pot  $\bar{\nu}_{\mu}$ -disapp, 18 points.
- NO $\nu$ A 12.5 × 10<sup>20</sup> pot  $\bar{\nu}_e$ -app, 13 points.

### **The New Minimal Standard Model**

• Minimal Extension to allow for LFV  $\Rightarrow$  give Mass to the Neutrino

\* With SM fields: Use 
$$\nu_L^c$$
 is right-handed  
 $\mathcal{L} - \mathcal{L}_{SM} = -\frac{1}{2} M_{\nu} \overline{\nu_L} \nu_L^C + h.c. \Rightarrow \begin{cases} L \text{ is violated } \Rightarrow \text{ Majorana } \nu = \nu^c \\ SU(2)_L \text{ is violated } \Rightarrow \text{ Effective LE} \end{cases}$ 

- \* Introduce  $\nu_R$  AND impose L conservation  $\mathcal{L} - \mathcal{L}_{SM} = -M_D \overline{\nu_L} \nu_R - \frac{1}{2} M_R \overline{\nu_R} \nu_R^C + h.c. \Rightarrow \text{Dirac } \nu \neq \nu^c$ :
- Either way  $\Rightarrow$  Mixing in charged current interactions of massive leptons

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

The New Minimal Standard Model:  $\nu$  flavour oscillations

• In vacuum:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

 $\Delta_{ij} = (m_i^2 - m_j^2) \frac{L}{4E} \Rightarrow$  No information on  $\nu$  mass scale nor Majorana/Dirac

- When osc between 2- $\nu$  dominates:  $P_{\alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$ 
  - $\Rightarrow$  No information on Mass Ordering ( $\equiv sign(\Delta m^2)$ ) nor octant of  $\theta$  nor CPV

The New Minimal Standard Model:  $\nu$  flavour oscillations

• In vacuum:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

 $\Delta_{ij} = (m_i^2 - m_j^2) \frac{L}{4E} \Rightarrow$  No information on  $\nu$  mass scale nor Majorana/Dirac

• When osc between 2- $\nu$  dominates:  $P_{\alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$ 

 $\Rightarrow$  No information on Mass Ordering ( $\equiv$  sign( $\Delta m^2$ )) nor octant of  $\theta$  nor CPV

• If  $\nu$  cross matter regions (Sun, Earth...) it interacts coherently Different flavours have different interaction



- $\Rightarrow$  Effective potential in  $\nu$  evolution:  $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu_e} = -\Delta V^{\bar{\nu}_e} = \sqrt{2}G_F N_e$
- $\Rightarrow$  Modification of mixing angle and oscillation wavelength (MSW)
- $\Rightarrow$  For solar  $\nu's$ : Dependence on  $\theta$  octant
- $\Rightarrow$  In LBL terrestrial experiment: Dependence on sign of  $\Delta m^2$  and  $\theta$  octant

**3***v* **Flavour Parameters** 

#### Concha Gonzalez-Garcia

• For for 3  $\nu$ 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix}$$

• Convention:  $0 \le \theta_{ij} \le 90^\circ$   $0 \le \delta \le 360^\circ \Rightarrow 2$  Orderings



 $3\nu$  Flavour Parameters

#### Concha Gonzalez-Garcia

• For for 3  $\nu$ 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix}$$

• Convention:  $0 \le \theta_{ij} \le 90^\circ$   $0 \le \delta \le 360^\circ \Rightarrow 2$  Orderings



| Experiment                                                                     | Dominant                                        | Important                      | Additional                                             |
|--------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|--------------------------------------------------------|
| Solar Experiments<br>Reactor LBL (KamLAND)                                     | $	heta_{12}\ \Delta m^2_{21}$                   | $\Delta m^2_{21} \ 	heta_{12}$ | $egin{array}{c} 	heta_{13} \ 	heta_{13} \end{array}$   |
| Reactor MBL (Daya Bay, Reno, D-Chooz)                                          | $	heta_{13}, \Delta m^2_{3\ell}$                |                                |                                                        |
| Atmospheric Experiments (SK,IC)<br>Acc LBL $\nu_{\mu}$ Disapp (Minos,T2K,NOvA) | $	heta_{23} \ \Delta m_{3\ell}^2. \ 	heta_{23}$ | $\Delta m^2_{3\ell}$           | $	heta_{13}$ , $\delta_{ m cp}$                        |
| Acc LBL $\nu_e$ App (Minos, T2K, NOvA)                                         | $\delta_{ m cp}$                                | $	heta_{13}$                   | $	heta_{23},\Delta m^2_{3\ell}$ , $\Delta m^2_{3\ell}$ |

### Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Martinez, Pinheiro, Schwetz, 2410.05380

(In last years good agreement with results from Bari (2503.07752) and Valencia groups)



### Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Martinez, Pinheiro, Schwetz, 2410.05380



#### Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Martinez, Pinheiro, Schwetz, 2410.05380



### Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Martinez, Pinheiro, Schwetz, 2410.05380



Concha Gonzalez-Garcia

• Dominant information in  $\nu_e$  vs  $\overline{\nu}_e$  appearance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin\left(\frac{V_EL}{2}\right) \sin\left(\frac{B_{\mp}L}{2}\right) \cos\left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$



 $\Rightarrow \text{Each T2K and NO}\nu\text{A favour NO}$ But some tension in value of  $\delta_{CP}$  in NO

Concha Gonzalez-Garcia

• Dominant information in  $\nu_e$  vs  $\overline{\nu}_e$  appearance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin\left(\frac{V_EL}{2}\right) \sin\left(\frac{B_{\mp}L}{2}\right) \cos\left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$



 $\Rightarrow \text{Each T2K and NO}\nu\text{A favour NO}$ But some tension in value of  $\delta_{CP}$  in NO  $\Rightarrow$  IO best fit in LBL combination



### Parameter goodness-of-fit (PG) test:

|             | normal ordering     |                 |             | inver               | ted orderin     | ng          |
|-------------|---------------------|-----------------|-------------|---------------------|-----------------|-------------|
|             | $\chi^2_{\rm PG}/n$ | <i>p</i> -value | $\#\sigma$  | $\chi^2_{\rm PG}/n$ | <i>p</i> -value | $\#\sigma$  |
| T2K vs NOvA | 7.9/3               | 0.047           | $2.0\sigma$ | 1.8/3               | 0.61            | $0.5\sigma$ |

No statistically significant incompatibility yet

- Dominant information in ν<sub>e</sub> vs ν<sub>e</sub> appearance in LBL:
   Each T2K and NOνA favour NO but tension in value of δ<sub>CP</sub> in NO
   ⇒ IO best fit in LBL combination ⇒ b.f. δ<sub>CP</sub> ~ 290°, CPC disfavoured at ≥ 3.5σ
- Additional information from  $\nu_{\mu}$  in LBL vs  $\nu_{e}$  disapperance in MBL Reactors:

 $\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$  $\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{No}$ 

Nunokawa, Parke, Zukanovich hep-ph/0503283



- Dominant information in ν<sub>e</sub> vs ν<sub>e</sub> appearance in LBL:
   Each T2K and NOνA favour NO but tension in value of δ<sub>CP</sub> in NO
   ⇒ IO best fit in LBL combination ⇒ b.f. δ<sub>CP</sub> ~ 290°, CPC disfavoured at ≥ 3.5σ
- Additional information from  $\nu_{\mu}$  in LBL vs  $\nu_{e}$  disapperance in MBL Reactors: Slightly better agreement in NO  $\Rightarrow$  LBL+Reac: NO and IO equally good  $\Rightarrow$  CPC OK
- Additional information from SK-ATM $\Rightarrow$  favouring of NO $\Rightarrow$  CPC : SK I-V 484 kton-years  $\chi^2$  table added  $\Rightarrow \Delta \chi^2_{IO-NO,with SK-atm} \simeq 6$



- Dominant information in ν<sub>e</sub> vs ν<sub>e</sub> appearance in LBL:
   Each T2K and NOνA favour NO but tension in value of δ<sub>CP</sub> in NO
   ⇒ IO best fit in LBL combination ⇒ b.f. δ<sub>CP</sub> ~ 290°, CPC disfavoured at ≥ 3.5σ
- Additional information from  $\nu_{\mu}$  in LBL vs  $\nu_{e}$  disapperance in MBL Reactors: Slightly better agreement in NO  $\Rightarrow$  LBL+Reac: NO and IO equally good  $\Rightarrow$  CPC OK
- Additional information from SK-ATM $\Rightarrow$  favouring of NO $\Rightarrow$  CPC : SK I-V 484 kton-years  $\chi^2$  table added  $\Rightarrow \Delta \chi^2_{IO-NO,with SK-atm} \simeq 6$ SK-atm result beyond expectation and not clearly compatible with any ordering



SK Coll. arXiv:2311.05105

2.0

### **Flavour Parameters: leptons vs quarks**

• Leptonic mixing matrix

|                   | $(0.80 \rightarrow 0.85)$ | 0.51  ightarrow 0.56 | $0.14 \rightarrow 0.16$ |
|-------------------|---------------------------|----------------------|-------------------------|
| $ U _{3\sigma} =$ | 0.23  ightarrow 0.51      | 0.46  ightarrow 0.69 | 0.63  ightarrow 0.78    |
|                   | 0.26  ightarrow 0.53      | 0.47  ightarrow 0.70 | 0.61  ightarrow 0.76 /  |

• Very different and precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$ 

• CP violation



Concha Genzalez-Garcia

# Early "Global Analysis"

#### • Barger, Whisnant, Cline, Phillips, PLB Jun 80

#### Table 1 Experimental limits of

Experimental limits on neutrino oscillations and neutrino flux predictions

| Observables                                                                                                  | Source<br>refs.                   | $\frac{L}{E}$ m                        | Present<br>limit                  | Solution                 |                         |                             |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|--------------------------|-------------------------|-----------------------------|
|                                                                                                              |                                   | <i>E</i> Mev                           |                                   | A                        | В                       | С                           |
| $P(v_e \rightarrow v_e)$                                                                                     | S [6]                             | 10 <sup>10</sup>                       | ≳1/4, ≲1/2                        | 0.41                     | 0.33                    | 0.41                        |
| $P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$                                                                     | R [3,4]<br>R a)                   | $1-3 \\ 5-20$                          | >0.5                              | 0.6-1.0<br>0.1-0.9       | 0.8 - 1.0<br>0.05 - 0.5 | 0.8 mean<br>0.1–0.9         |
| $P(\nu_e \rightarrow \nu_e)$                                                                                 | А<br>М [12]<br>м b)               | 0.04<br>0.3<br>1-3                     | >0.85 e)<br>1.1 ± 0.4             | 1.0<br>0.95<br>0.6-1.0   | 1.0<br>1.0<br>0.8-1.0   | 0.9<br>0.8 mean<br>0.8 mean |
| $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$                                                               | M [12]<br>M b)                    | 0.3                                    | <0.04                             | 10 <sup>-4</sup><br>0.03 | $10^{-3}$<br>0.11       | 10 <sup>-3</sup><br>0.03    |
| $P(\nu_\mu \to \nu_{\rm e})/P(\nu_\mu \to \nu_\mu)$                                                          | A [10,11]<br>A [18] <sup>c)</sup> | 0.04<br>1-7                            | <10 <sup>-3</sup>                 | $10^{-6}$<br>0-0.2       | $10^{-5}$<br>0-0.8      | $10^{-4}$<br>0-0.2          |
| $\frac{P(v_e \rightarrow v_{\tau})}{P(v_e \rightarrow v_{\tau})/P(v_e \rightarrow v_{er})}$                  | A (13)                            | 0.04                                   | <0.2  e)<br>$<2.5 \times 10^{-2}$ | $10^{-3}$<br>$10^{-5}$   | $10^{-5}$<br>$10^{-5}$  | $0.1 \\ 10^{-3}$            |
| $\langle P(\nu_{\mu} \rightarrow \nu_{\mu}) \rangle$<br>$\langle P(\nu_{\mu} \rightarrow \nu_{\mu}) \rangle$ | Df)                               | $10^{2} - 10^{3}$<br>$10^{3} - 10^{5}$ | ~0.5                              | 0.51                     | 0.51                    | 0.51                        |
| $\langle P(v_{\rm C} \rightarrow v_{\rm e}) \rangle$                                                         | D g)                              | $10^{3} - 10^{5}$                      |                                   | 0.42                     | 0.33                    | 0.40                        |
| $P(\nu_{\rm C} \rightarrow \nu_{\mu}) P(\nu_{\rm C} \rightarrow \nu_{\rm e})$                                | D g)<br>D g)                      | $10-10^{2}$<br>$10-10^{2}$             |                                   | 0.3-0.7<br>0.2-0.6       | 0.3-0.7<br>0.2-0.6      | 0.3-0.7<br>0.2-0.6          |

### $\frac{\delta m_{13}^2}{\delta m_{12}^2} \frac{\delta m_{12}^2}{\theta_1} \frac{\theta_2}{\theta_2} \frac{\theta_3}{\theta_3} \frac{\delta}{\theta_1}$ Solution A: 1.0 eV<sup>2</sup> 0.05 eV<sup>2</sup> 45° 25° 30° 0°. Solution B: 0.15 eV<sup>2</sup> 0.05 eV<sup>2</sup> 55° 0° 45° 0° Solution C: 10 eV<sup>2</sup> 0.05 eV<sup>2</sup> 45° 25° 30° 0°.

#### KM-like mixing convention

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_1 & s_1c_3 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 + s_2s_3e^{i\delta} & c_1c_2s_3 - s_2c_3e^{i\delta} \\ -s_1s_2 & c_1s_2c_3 - c_2s_3e^{i\delta} & c_1s_2s_3 + c_2c_3e^{i\delta} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix},$$

• De Rujula,Lusignoli,Maiani,Petcov,Petronzio, NPB May 80



$$U = \begin{pmatrix} 0.65 & 0.65 & -0.38 \\ [-0.71 e^{i\delta} \mp | < 0.021 |] & [0.71 e^{i\delta} \mp | < 0.02 |] & \mp | < 0.06 | \\ [0.27 \mp e^{i\delta} | < 0.04 |] & [0.27 \pm e^{i\delta} | < 0.04 |] & 0.92 \end{pmatrix}, \quad (6.2)$$

with mass differences in the ranges

$$10^{-5} \text{ eV} \le \sqrt{|m_1^2 - m_2^2|} \le 1 \text{ eV},$$
  
 $\sqrt{|m_3^2 - m_1^2|} \sim 10 \text{ eV}.$ 

**Early Reactor**  $\mathcal{O}(eV)$  "hints"

encha Genzalez-Garcia ia

• Data from Savannah River Plant Nezrick and Reines, PR Feb 66 L=6 m

$$\frac{\bar{\sigma}_{\rm exp}}{\bar{\sigma}_{\rm th}} = 0.88 \pm 0.13$$

Reines, Sobel, Pasierb PRL Oct 80 L=11.2 m



• Early Pheno Analysis

Barger, Whisnant, Cline, Phillips, PLB Jun 80



• Even Flux Independent Analysis !!!

Silverman and Soni, PRL Feb 81

