Looking Beyond the Standard Model at the Electron-Ion Collider

Hooman Davoudias

HET Group, Brookhaven National Laboratory

https://www.bnl.gov/hepeic/

Based on: H.D., H. Liu, 2505.08871 [hep-ph]

Phenomenology Before and After the Standard Model University of Wisconsin-Madison, June 5, 2025

First things first

- I was at UW-Madison 2004-2006 (P.A.M. Dirac Fellow).
 - I went on to be a staff physicist at Brookhaven National Laboratory in 2006.
- Many of us who came here as junior researchers found it to be an active and supportive place to do physics.

• The Phenomenology Institute, thanks to a large degree to Vernon's vision for its place in theoretical particle physics, has left its mark on our careers and the greater community.

- Much has changed, both in Madison and in physics, since my days here.
- However, one thing has remained the same:

Vernon still writes more papers per year than most of us do at our peak!

- Seven over the last ~ 12 months by my count

Phenomenology circa 2025 (my two cents)

- Particle theory is searching for new organizing principles
- Old arguments for new physics are getting squeezed
- So far: no obvious empirical hints or emerging theoretical consensus
- Dark matter and neutrino masses: a large set of ideas and directions
- Casting a wide net seems like a good way forward
- Given limited resources and new high energy colliders decades away, one needs to get creative

• This attitude has been getting more attention in recent years, with many new ideas emerging to look for physics beyond the Standard Model across a wide range of scales

• If a new facility becomes available at any frontier, we should ask how it may be leveraged to advance fundamental physics

The Advent of a New Collider

• The Electron-Ion Collider (EIC), to be built over the next \sim 10 years at Brookhaven National Laboratory, will open new frontiers in studying the structure of hadrons

• EIC: relatively high center of mass energies, luminosity \oplus polarized beams EIC Yellow Report, 2103.05419

- Electron beam of up to 18 GeV
- Proton beam of up to 275 GeV ($\sqrt{s} \approx 141$ GeV)
- Heavy ion beam (Au) up to 110 GeV ($\sqrt{s} \approx$ 89 GeV)
 - Au: mass number A = 197, atomic number Z = 79
- Integrated luminosity: $\lesssim 100/A~{
 m fb^{-1}}$
- Proton and electron polarization goal: 70%
- Excellent electron identification
- Baseline detector (ePIC)
- New capabilities can be envisioned
- Implemented in a possible second detector

EIC as a Discovery Tool for Dark Bosons

• Recent interest in using EIC for probing possible new physics

For example: 1006.5063, 2004.00748, 2102.06176, 2112.04513, 2112.07747, 2204.07557, 2210.09287, 2310.08827, 2402.17821, 2503.02605.

- Here we will focus on "dark bosons": H.D., Liu, 2505.08871
- Potentially from a "dark sector" that includes dark matter
- With weak but non-negligible coupling to electrons
- Having $\mathcal{O}(1)$ branching fraction into invisible final states
- Such dark bosons can originate from a variety of motivated models:

(i) Gauged B - L, $L_e - L_i$ with $i = \mu, \tau$, dark Z (mixing with SM Z boson)

- Invisible final states: SM neutrinos

(ii) General vector or scalar fields coupled to light dark sector states

Basic Models

$$\mathcal{L}_{S} = g_{S}^{e} \phi \bar{e} e + g_{S}^{\chi} \phi \bar{\chi} \chi$$
$$\mathcal{L}_{V} = g_{V}^{e} \phi_{\mu} \bar{e} \gamma^{\mu} e + g_{V}^{\chi} \phi_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

- $g^e_{S(V)}$ and $g^{\chi}_{S(V)}$: scalar (vector) couplings to electrons and χ
- $m_{\chi} < m_{\phi}/2 \Rightarrow \phi \rightarrow \bar{\chi}\chi$ allowed on-shell (χ : neutrino, dark state)
- We consider coherent scattering
 - Enhanced by heavy ion Z^2 (mass number A) Nucleus mass m_A
 - Nucleus (ion) stays intact
- For $m_e \ll m_\phi \ll m_A \ll \sqrt{s}$, transferred momentum to the nucleus $Q_A^2 \sim m_\phi^4 m_A^2/s^2$
- Nuclear form factor strongly suppresses $\sqrt{Q_A^2} \gg r_A^{-1} \sim (A^{1/3}\,{
 m fm})^{-1}$
- We take $E_e = 18$ GeV, $E_A = 100$ GeV per nucleon

$$\Rightarrow (m_{\phi})_{\max} \sim 20 \text{ GeV}(197/A)^{1/6}$$

Kinematics

- Emitted ϕ takes most of the electron beam energy
- Momentum transfer Q^2 mostly on the electron side
- SM background marked by soft and similar Q^2 from either beam
- For heavier ϕ , momentum transfer gets larger: more central recoil e

- Similar cross sections for scalars and vectors
- Red curves: after cuts
- We focus on the vector case

Cuts for Suppressing the Background

• Cuts

(p_T : transverse momentum, η : pseudo-rapidity)

 $\mid \eta_{e} \mid <$ 3.5, $p_{T}^{e} >$ 1.2 GeV, $E_{e} <$ 10 GeV, $Q_{e}^{2} >$ 4 GeV²

- A main background: $e^-A \rightarrow e^-A \gamma$ with the γ missed
- E_e cut: background bremsstrahlung γ energy mostly > 5 GeV
 - Inefficiency $10^{-6} \le \epsilon \le 10^{-4}$ for $|\eta_{\gamma}| < 3.5$ (assumed missed otherwise)

Maeda et al., 1412.6880; Fry et al., 2501.14827

- Taking similar ϵ for hard jets, DIS background $e^-A \rightarrow e^-Xj$ also suppressed
 - Additional leverage from Zero Degree Calorimeter to veto incoherent scattering

Results

• EIC 3σ projections (red dashed/dotted curves):

• EIC: leading projections for 0.3 GeV $\lesssim m_\phi \lesssim 10$ GeV

Concluding Remarks

• With no obvious guidance from theory and experiment all tools should be used to look for physics beyond the SM

• Perhaps new physics is not at very high scales, but hidden by feeble couplings to the SM sector

• The EIC can offer a new venue for dark sector searches

• Our results suggest the EIC can be a powerful probe of invisible light new bosons from a variety of models