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Gravitational wave and early universe
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A coupling simple stories

A field which will have a lot data, will see tremendous 
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Figure 1. An overview of potential GWB signals across the frequency spectrum. The light blue
curve shows the prediction for single-field slow-roll inflation with a canonical kinetic term, with tensor-
to-scalar ratio r0.002 = 0.1 [52]. The pink curve shows a GWB from Nambu–Goto cosmic strings, using
“model 2” of the loop network, with a dimensionless string tension of Gµ = 10�11 [53]. The brown curve
shows a GWB from inspiralling supermassive BBHs, with the amplitude and shaded region shown here
corresponding to the common noise process in the NANOGrav 12.5-year data set [54]. The two grey
curves show GWBs generated by first-order phase transitions at the electroweak scale (⇠200 GeV) and
the QCD scale (⇠200 MeV), respectively [55]. The yellow curve shows a GWB generated by stellar-mass
compact binaries, based on the mass distributions and local merger rates inferred by LVK detections [56].
The dashed curves show various observational constraints, as described further in Section 5 (this in-
cludes the PPTA constraint, which intersects the possible NANOGrav SMBBH signal); the dotted curve
shows the integrated constraint from measurements of Neff, which cannot be directly compared with the
frequency-dependent constraint curves but is shown here for indicative purposes.

which is imprinted in the measured strain. Note that this measurement includes non-negligible
selection effects, as qualitatively different backgrounds contribute from different redshift shells
and from different directions.

In this section, we review both astrophysical and cosmological GWBs, providing the
necessary background for the targeted searches discussed in Section 5. We also comment on
the observational properties of the signal which are essential to understand when building an
optimal search method. The various sources are also summarised in Figure 1, which includes
the sensitivity of several GW detection efforts for reference.

3.1. Astrophysical Backgrounds
Astrophysical GWBs are the collection of all GWs generated by astrophysical processes

which are individually unresolved by your GW detector. These can be either individual
subthreshold signals, or they can be so numerous that they add up incoherently and form a
continuous signal in the timestream.

Perhaps the most studied signal in the literature is a background sourced by a collection of
inspiralling and merging compact binary systems. These include black hole binaries, neutron
star binaries, white dwarf binaries, and systems counting a mixed pair of these objects. Black
hole binaries in particular are a vast category of sources, as the mass of each black hole in

Review by Renzini et al, 2202.00178

Typically, need something quite dramatic.
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1st order phase transition
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depend on its details. Therefore, with the knowledge of Ẽ
i

0(k) and G̃
f

0 (k) from the measurement
of the the IR and the oscillatory parts of the signal, the UV part can be used to determine the
detailed mechanism of the GW production.

Figure 3. Illustration of the k dependence of di↵erent parts of a typical GW spectrum.

Perhaps the simplest picture of the early universe is a single period of quasi-de Sitter inflation. At
the end of the inflation, there is a a quick reheating followed by radiation dominated (RD) expansion.
However, the actual evolution can be much more complicated. The inflation does not have to be
quasi-de Sitter. In addition, the inflationary epoch can have di↵erent stages, some of them could be
close to quasi-de Sitter but others not. During the reheating, if the conversion from the energy in
the inflaton to the radiation is not very e�cient, the universe will be matter dominated (MD) for a
significant period of time. In the RD period, if there are some long lived matter, it is possible that
they will come dominate the energy density, leading stages of MD. As the universe is cooling down,
there can also be phase transitions which can produce other topologically defects (such as cosmic
strings) which could dominate the energy density for a period of time and alter the evolution. If some
of these new dynamics happen when the CMB modes (or modes which can be probed by other large
scale structure measurements) exit or re-enter the horizon, or during some later epoch such as the big
bang nucleosynthesis (BBN), there could be corresponding observational signals. Otherwise, if these
would happen in a “cosmic dark age” in between, we would have few probes. For example, even in
the simplest scenario with inflation is driven by a slow rolling scalar field which is also responsible for
reheating, we have very little handle on the shape of the inflaton potential for the last ten(s) e-foldings
before reheating.

From the discussion above, it is obvious that the gravitation wave signal discussed in this paper
o↵ers a window in probing the cosmic dark age. As we will demonstrate in detail in this paper, the
shape of the gravitational wave signal, encapsulated in factors G̃

f

0 (k) and Ẽ
i

0(k), depend sensitively on
the evolution of the universe. If gravitational wave with the oscillatory feature described in this paper
is observed, it would o↵er an unmistakable signal for an approximate instantaneous source in the early
universe. At the same time, it would be of great interest to measure its shape in detail which would
give a lot of power in distinguishing di↵erent scenario of the history of the early universe [26].

– 5 –

h ∝ cos(kτ*)
k2

sin kτ
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dρGW
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Figure 10. The GW spectrums from the phase transition for t
p inflation and (MD-)RD post-inflationary

evolution with H⇤ = 108GeV. The solid line is plotted using p ! 1 or dS inflation and aend/a⇤ = exp(�19)

while the dashed line is for p = 3 and aend/a⇤ = exp(�23). Four di↵erent colors corresponding to di↵erent ⌧r
settings. The upper one is for �/H⇤ = 10 and the lower one is for �/H⇤ = 3.

discussion of this feature and the spectrum. In addition to a first order phase transition, this feature
can also arise in any other instantaneous source. Its discovery can be an unmistakable signal of such
a dramatic event during the inflation.

The cosmological background the gravitational waves have propagated through will also imprint
on the final gravitational wave spectrum we see today. As such, the shape of the GW signal will
also o↵er a new window on the cosmological evolution in the early universe which can be invisible to
CMB, large scale structure, and other observables. In particular, we have demonstrated that if there
are no second inflationary stage during the radiation domination, the IR part of the gravitational
wave spectrum is only sensitive to post inflationary history. The UV part of the gravitational wave

– 24 –

4.1 Strength of the peak signal

The peak of the GW signal and its corresponding frequency depend on the spectral shape.

From Eq. (2.43) and Eq. (2.45),the signal strength is proportional to
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The dependence on the wave number k of each part of the GW spectrum for di↵erent scenarios

are shown in Table 2. In general, we can parameterize the scale factor a during inflation as tp

with p > 1, and after inflation as tp̃. The spectrum in the UV region can be parameterized as
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positive or negative. In the case of quasi-de Sitter inflation, we have p ! 1. Therefore,

iOSC < 0 if p̃ > 1/3. For example, this would be the case for both MD and RD, as shown in

Table 1. At the same time, we have iOSC = 0 for kination domination. For the IR part of the

spectrum, parameterized as kiIR , we have iIR = 7 � 2(1 � p̃)�1. Therefore, iIR > 0 if p̃ < 5/7.

As we can see from Table 1, this condition is always satisfied in the standard cases discussed

in the literature. Thus, the position of the global maximum of the observed GW spectrum is

determined by iOSC. More specifically,

• If iOSC < 0, the global maximum is at the transition between the IR part and the

oscillatory part, where we have kp ⇡ H?. This is the case shown in Figs. 5,6,8 and 9.

Hence, the height of the global maximum can be estimated by substituting kp = H? to

Eq. (2.43). Then we have
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as a benchmark value for the strength of the GW signal.
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3. ANALYTICAL DESCRIPTION OF THE SPECTRUM

In this section we estimate the complete spectrum of scalar-induced gravitational waves analytically. To simplify
the analysis we neglect anisotropic stress and set Ψ = Φ. In section 4 we evaluate the exact spectrum numerically
including anisotropic stress and show that this gives only a small correction. With Ψ = Φ, the source term of the
equation of motion (18) can be expressed solely by the Bardeen potential Φ,

h′′
k + 2Hh′

k + k2hk = S(Φ(kη)) , (35)

and f(k, k̃, η) in equation (28) is expressed by a single transfer function Φ,

3(1 + w)

4
f(k, k̃, η) = 2(5 + 3w)Φ(|k − k̃|η)Φ(|k̃|η) + 4

(

2ηΦ(|k − k̃|η) + η2Φ′(|k − k̃|η)
)

Φ′(|k̃|η) . (36)

In Appendix B we show that the transfer function for first-order scalar modes can be written in the following form

Φ(kη) =

{

1
1+k2η2 η < ηeq

1
1+k2η2

eq
η > ηeq

(37)

ln(a)

Amplitude

ak

h   = 
(i)

h = h
(f )

aeq a*

   /kp
2

S  /k(f ) 2

h  = 0p

S

k

S  /k(i) 2

-1

FIG. 2: Evolution of scalar source and induced gravitational waves. Second-order tensors, h, are generated when the
mode k enters the horizon at ak. If horizon entry occurs during the radiation dominated era, then the scalar source decays as
a−γ until matter-radiation equality, aeq. During matter domination the scalar source terms remains at a constant value, S(f).
Gravitational waves redshift like a−1 as long as h > S

(f)/k2, but remain at a constant amplitude maintained by the constant
source term after that, a > a∗

k.

To study the generation of h induced by S we make the approximation that gravitational waves are produced
instantaneously when the relevant mode enters the horizon. The subsequent evolution of the tensor mode is scale-
dependent and determined by the time evolution of the scalar source term (see Figure 2). Scalar-induced gravitational
waves redshift as long as their magnitude is greater than S/k2. After that they freeze at a constant value maintained
by the constant source term during matter domination. We define the transfer function for scalar-induced gravitational
waves, t(k, η), as follows

hk(η) ≡ t(k, η)h(i)
k , (38)

where h(i)
k is the value of hk just after the instantaneous generation of gravitational waves after horizon entry (see

Figure 2). We estimate h(i)
k by dropping time derivatives in the equation of motion (35) (since kη > 1 after horizon

entry)

h(i)
k ∼ 1

k2
S(i) . (39)

Baumann, Steinhardt, Takahashi, hep-th/0703290

Modes enter horizon during RD, starts oscillate, and generates GW
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Figure 4. (a) The kernel function from eq. (74). We note a
clear resonance contribution from t ' 0.7 corresponding to
u + v '

p
3. (b) The transfer function T�. (c) Function

f(p, q, ⌧) as in eq. (69). We see that for the scalar modes
that enter the horizon earlier, with p, q > k, this function is
more suppressed as expected from the behavior of the transfer
function.

With these expressions, we can obtain a physical un-
derstanding of GW generation via eq. (70). The Green
function, given in eq. (76), is an oscillatory function of
time whose frequency is k. The quantity f(p, q, ⌧) is
also an oscillatory and decaying function of time (see
fig. 4c), inheriting these properties from the transfer func-
tion (75). Therefore, the dominant contribution to the
integral (68) is a resonant contribution when the mo-
mentum of the produced GW is of the same order as the
momentum of the scalar modes, i.e., k ⇠ p ⇠ q. In par-
ticular, the resonant point is at u+v '

p
3 [54] as shown

in fig. 4a. GW generation is suppressed in other parts
of the phase space. For example, the source term, which
contains gradients of the curvature perturbation [53], is
suppressed by small derivatives if any of the wavenumbers
p, q of ⇣ is much smaller than k. On the other hand, if
p, q are much larger than k, then the scalar modes would
have decayed significantly after entering the horizon by
the time k ⇠ H, and thus the production of GW with
momentum k gets suppressed.

To obtain the final result for ⌦GW, we note that the
GW comoving wavenumber k is related to the present-
day, redshifted frequency f of the generated GW via

f = f⇤

✓
a⇤
a0

◆
=

k

2⇡
' 1.5 mHz

✓
k

1012 Mpc�1

◆
, (77)

where f⇤ and a⇤ are respectively the frequency and the
scale factor at the time of GW generation. Using these

expressions, we arrive at our final result, shown in Fig. 5,
for the same benchmark choices discussed in Fig. 3. We
see that stochastic e↵ects can naturally give rise to a large
enough SGWB, within the sensitivity range of DECIGO,
BBO, µ-Ares, and Ultimate DECIGO [60–62].

VI. CONCLUSION

In this work, we have discussed an early Universe sce-
nario containing a light spectator field, along with an in-
flaton field. The fluctuations of the inflaton are red-tilted
and explain the observed fluctuations in the CMB and
LSS. On the other hand, the spectator field � naturally
acquires a blue-tilted power spectrum. This blue-tilted
power spectrum is eventually cut-o↵ at very small scales
since when such small-scale modes enter the horizon, the
spectator field contributes subdominantly to the total en-
ergy density. As a consequence, primordial black holes
are not produced in this scenario. Overall, this mecha-
nism of generating a blue-tilted spectrum works for any
generic inflaton potential and does not require any par-
ticular fine-tuning or structure such as an inflection point
or a bump on the potential or an ultra slow-roll phase.

The blue-tilted spectrum gives rise to large curvature
perturbations at small scales. These, in turn, source a
stochastic gravitational wave background (SGWB) when
the perturbations re-enter the horizon. Focusing on some
benchmark choices for the number of e-foldings and spec-
tator field potential, we have shown that this scenario
predicts observable gravitational waves at future detec-
tors operating in 10�5 Hz to 10 Hz range, with strengths
⌦GWh

2 ' 10�20 � 10�15.
There are various interesting future directions. In par-

ticular, we have worked in a regime where � does not
dominate the energy density during the cosmological his-
tory. It would be interesting to explore the consequences
of an early matter-dominated era caused by the � field.
We have also seen that the low-frequency scaling of the
SGWB spectrum depends on the mass and coupling of
� and is generally di↵erent from the f

3-scaling expected
in the context of cosmological PT, or f

2/3-scaling ex-
pected in the context of binary mergers. This di↵erent
frequency dependence can be used to identify the origin
of an SGWB, and distinguish between various cosmolog-
ical or astrophysical contributions. Along these lines, it
would be interesting to carry out a quantitative anal-
ysis to understand how well we can separate any two
frequency dependencies, for example, by doing a Fisher
analysis.

NOTE ADDED

While we were finishing this work, the NANOGrav re-
sult combining 15-year data appeared [63]. Secondary
gravitational waves from the scalar perturbation can in
principle give rise to the signal [64]. Such scalar per-
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4
. (2.23)

Results: eigenvalues and eigenfunctions + power spectrum

2.3 Cosmological History and Curvature Perturbation

In this subsection we discuss a cosmological scenario in which the curvature perturbation
on large scales is controlled by the inflaton field �. This perturbation is slightly red-tilted,
as required by CMB observations. On the other hand, the curvature perturbation on small
scales is controlled by a spectator field � which gives rise to a blue-tilted spectrum. This
blue-tilted spectrum originates from stochastic fluctuations of �, as we discuss now.

A brief history of the early Universe in our scenario is as follows. Background dynamics
is driven by the inflaton field during inflation and � behaves as a spectator field with subdom-
inant energy density. � acquires stochastic fluctuations during inflation and becomes frozen
with some root mean square equilibrium displacement away from the minimum. After the
end of inflation, inflaton reheats into radiation which dominates the energy density while �

keeps diluting as a cosmological constant. As the Hubble scale falls below the effective mass
of �, it starts oscillating around its potential. Eventually � decays into radiation, following
which the evolution of the Universe becomes standard.

As a concrete example let us consider the model considered in (2.23). At the end of
inflation, the spectator field gets localized to the minimum of its potential, h�ei = 0. However,
it has a non-zero field variance h�2

e i 6= 0. The subscript ‘e’ denotes end of inflation. Total
energy density carried by � at the end of inflation is then given by,

⇢�,e =
1

2
m

2h�2
e i+

�

4
h�4

e i '
1

2
m

2h�2
e i+

�

4
h�2

e i2, (2.24)

where we assume negligible non-Gaussianity in the second equality. [SK: I don’t think we
should make this assumption since we can do the full computation anyways.] Depending on
the relative size of the effective mass [SK: probably need an expression] compared to the
Hubble parameter, the energy density in � redshifts in different ways. In its early stages,
it behaves as a cosmological constant. Subsequently it dilutes as radiation, and finally as
pressure-less dust before decaying into SM radiation,

⇢�(t) =

8
><

>:

⇢�,e , me↵ . H

⇢�,e(a/a1)
�4

, me↵ & H and m .
p

�h�2i/2
⇢�,e(a2/a1)

�4
(a/a2)

�3
, me↵ & H and m &

p
�h�2i/2.

(2.25)

[SK: If we do not use the above and the below equations, may be we can remove them.]
The first transition happens when me↵ = H, i.e. m

2
+ 3�h�2

e i = H
2 which in a radiation

dominated universe implies

a1

ae
=

✓
H

2
e

m2 + 3�h�2
e i

◆1/4

'
✓

H
2
e

3�h�2
e i

◆1/4

(2.26)

For the second equality, we use the fact that self-interaction energy is dominant. The second
transition happens when m =

p
�h�2i/2. We have h�2i / a

�2 during the radiation phase to
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Consider the mode with physical momentum k(t). The mode exits the horizon when k(t⇤) = H.

At later time t, the physical momentum becomes

k(t)

k(t⇤)
=

k(t)

H
= exp(�H(t� t⇤)). (1)

For the fluctuation of a light (but massive) field �. When a certain mode with physical

momentum k(t) is exiting the horizon, its amplitude is �(t⇤). At the same time, the amplitude

will decrease (albeit slowly since m� < H) since the field is massive. We take the evolution of the

amplitude obeys the classical equation of motion (assuming free field without self-interaction for

simplicity)

�̇ = �m
2
��

3H
. (2)

Then, the amplitude is

�k(t) = �(t⇤) exp

✓
�m

2
�

3H
(t� t⇤)

◆
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m
2
�

3H2 = �(t⇤)
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, (3)

where we used Equation 1 in the last step. From this, we conclude
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� 2m2
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(4)
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Consider the mode with physical momentum k(t). The mode exits the horizon when k(t⇤) = H.

At later time t, the physical momentum becomes

k(t)

k(t⇤)
=
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= exp(�H(t� t⇤)). (1)

For the fluctuation of a light (but massive) field �. When a certain mode with physical

momentum k(t) is exiting the horizon, its amplitude is �(t⇤). At the same time, the amplitude

will decrease (albeit slowly since m� < H) since the field is massive. We take the evolution of the

amplitude obeys the classical equation of motion (assuming free field without self-interaction for

simplicity)
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where we used Equation 1 in the last step. From this, we conclude
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Figure 3. Power Spectrum of Curvature Perturbation.

inflationary models. Then setting k = a0H0, and H = 5 ⇥ 1013 GeV, consistent with the current

upper bound, we get N(k) ⇡ 62 and kend ⇡ 1023 Mpc�1.

The energy density in � during inflation is given via eq. (40). For m
2 = 0.2H

2 and � =

0.05, we get hV (�)i ⇡ 0.02H
4, implying hV (�)i/V⇤ ⇡ 3 ⇥ 10�12. Now a given k-mode reenters

the horizon when k = aentHent, assuming radiation domination instantly after inflation, we get

k/kend = aend/aent. Choosing k = 1014 Mpc�1 and ⇢end = V⇤/100, we see

f� =
hV (�)i

⇢end
⇥

aent

aend
⇡

1

3
. (53)

The result is shown in Fig. ??.

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar Curvature Perturbation

We now review how large primordial curvature perturbations can source GW at the second

order in cosmological perturbation theory. We then evaluate the GW spectrum sourced by P⇣

computed in section IV. We start our discussion with a brief review of the essential relations and

expand the discussion further in appendix A.

We write the GW fluctuations in Fourier space as,

hij(⌧,x) =
X

�=+,⇥

Z
d3

k

(2⇡)3
e
ik·x

✏
�

ij(k)h�(⌧,k) , (54)

 Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048

blue tilt

Assuming the scalar behave similar to curvaton.  
Becoming important before decay. 
Assumption: scalar field does not dominate (more later)
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Figure 9. SGWB spectrum for the Stochastic Curvaton Scenario (Scenario 1) with the curvature
perturbation given in Fig. 3. We choose ω = 0.1, consistent with the CMB and Lyε constraints. In
dot-dashed (‘pure RD ker.’), we show the result for a pure RD era using the standard RD kernel to
compute !GW, keeping ”2

ω(k) the same. As expected based on Fig. 8, the EMD enhances the peak
while suppressing the tail, due to entropy dilution from particle decay. We show the sensitivity curves
for SKA, µARES, LISA, BBO, DECIGO, DO Optimal (DO-opt), AEDGE, ET [90], Asteroid [91],
Ultimate DECIGO (ulti-DECIGO) [92].
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Figure 10. Same as Fig. 9 but for the Misaligned Curvaton Scenario (Scenario 2) with the curvature
perturbation given in Fig. 4.

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
59.2 1.18 → 1022 3.14 → 108 4.0 → 107

The dynamics of the radial mode is shown in Fig. 12 and the primordial curvature perturba-
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but rather can roll towards it, given appropriate initial conditions.3 For example, if s rolls
from large field values towards small field values during inflation, modes exiting later during
inflation have more power. That is, the spectrum is blue-tilted. However, once the field
reaches the minimum, →s↑ remains constant with time, implying an almost flat spectrum of
!2

Sω
.
We can illustrate this behavior by considering a ‘Mexican hat’ potential for a complex

scalar field ”,

V (”) = ω!(|”|
2
↓ f

2

a/2)2 ↓

(
1

4
m

2”2 + h.c.

)
, (3.14)

with ” = (s/
↔

2) exp(iε) and m parametrizing a soft-breaking of the U(1) symmetry. In-
cluding the kinetic terms we can write,4

L ↗
1

2
(ϑµs)

2 +
1

2
s
2(ϑµε)

2
↓ ω!(s2

↓ f
2

a )2/4 +
1

2
m

2
s
2
ε
2
. (3.15)

The Goldstone mode ε is a light field during inflation and since it has a subdominant energy
density during inflation, its fluctuation corresponds to isocurvature modes. We denote an
initial misalignment angle as εi = →ε↑ and the fluctuations as ϖε = ε ↓ εi. The canonically
normalized Goldstone mode is given by ϱ ↘ →s↑ε, assuming the homogeneous VEV →s↑ is
slowly varying with respect to the Hubble rate. The power spectrum of fluctuations is then
given by →(ϖε)2↑ = H

2
/(2ς→s↑)2. Following the same steps as in the previous subsection, we

can derive

!2

Sω
≃

4

ε
2

i

→(ϖε)2↑ =

(
H

ςεi→s↑

)
2

. (3.16)

To understand the behavior of !2

Sω
as a function of scale, we can solve for the homo-

geneous dynamics of s using Eq. (3.15). For this purpose, we can neglect the angular mode
ε. We show the numerical result in Fig. 1 which shows that s rolls from its initial location,
oscillates around the minimum and eventually settles at fa. To explicitly show the scales
involved, we replace the time coordinate t in terms of the k-mode that exits the horizon
at that time: ln(k/k→) = H(t ↓ t→). Here t→, or equivalently k→, is a fiducial time and in
particular, we fix k→ = 20 Mpc↑1. Physically, the scale k→ exits the horizon when s starts to
move on its potential. Its time evolution can approximated by s ⇐ exp(↓(3/2↓φ)Ht) where
φ =

√
9/4 ↓ m2

s/H
2 and ms is chosen to fit the envelope of the oscillations in Fig. 1.

At the scale k→, the correction to !2

ω
is small enough compared to the current precision

and the energy density in the radial mode is also subdominant compared to the inflationary
energy density. The behavior of !2

ω
for k < k→ depends on the dynamics of the radial mode

prior to the time t→ and is model dependent. However, for k ⇒ k→, !2

Sω
⇐ 10↑2

↓ 10↑3

without violating the current bounds. For the examples shown in Fig. 1, s settles down to
the minimum approximately for ln(k/k→) > 12 implying !2

Sω
(k) is approximately flat for

ln(k/k→) > ln(kc/k→) = 12. Choosing k→ = 20 Mpc↑1, this implies a flattening for k > kc

with kc ≃ 3.2 ⇑ 106 Mpc↑1. This will serve as our benchmark example of an almost flat
but relatively large !2

Sω
(k). In Sec. 4 we will use the notation ϱ0,end ↘ faεi to denote the

normalized field value of the Goldstone mode after s has settled to its minimum.
3A dynamical ‘decay constant’ can also play a role in determining the dark matter abundance, see e.g., [75].
4The soft breaking also contributes to a mass term for s which is however subdominant for the our parameter

choice described later and is not included here.
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but rather can roll towards it, given appropriate initial conditions.3 For example, if s rolls
from large field values towards small field values during inflation, modes exiting later during
inflation have more power. That is, the spectrum is blue-tilted. However, once the field
reaches the minimum, →s↑ remains constant with time, implying an almost flat spectrum of
!2

Sω
.
We can illustrate this behavior by considering a ‘Mexican hat’ potential for a complex

scalar field ”,
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4
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with ” = (s/
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2) exp(iε) and m parametrizing a soft-breaking of the U(1) symmetry. In-
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The Goldstone mode ε is a light field during inflation and since it has a subdominant energy
density during inflation, its fluctuation corresponds to isocurvature modes. We denote an
initial misalignment angle as εi = →ε↑ and the fluctuations as ϖε = ε ↓ εi. The canonically
normalized Goldstone mode is given by ϱ ↘ →s↑ε, assuming the homogeneous VEV →s↑ is
slowly varying with respect to the Hubble rate. The power spectrum of fluctuations is then
given by →(ϖε)2↑ = H

2
/(2ς→s↑)2. Following the same steps as in the previous subsection, we

can derive
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To understand the behavior of !2

Sω
as a function of scale, we can solve for the homo-

geneous dynamics of s using Eq. (3.15). For this purpose, we can neglect the angular mode
ε. We show the numerical result in Fig. 1 which shows that s rolls from its initial location,
oscillates around the minimum and eventually settles at fa. To explicitly show the scales
involved, we replace the time coordinate t in terms of the k-mode that exits the horizon
at that time: ln(k/k→) = H(t ↓ t→). Here t→, or equivalently k→, is a fiducial time and in
particular, we fix k→ = 20 Mpc↑1. Physically, the scale k→ exits the horizon when s starts to
move on its potential. Its time evolution can approximated by s ⇐ exp(↓(3/2↓φ)Ht) where
φ =

√
9/4 ↓ m2

s/H
2 and ms is chosen to fit the envelope of the oscillations in Fig. 1.

At the scale k→, the correction to !2

ω
is small enough compared to the current precision

and the energy density in the radial mode is also subdominant compared to the inflationary
energy density. The behavior of !2

ω
for k < k→ depends on the dynamics of the radial mode

prior to the time t→ and is model dependent. However, for k ⇒ k→, !2

Sω
⇐ 10↑2

↓ 10↑3

without violating the current bounds. For the examples shown in Fig. 1, s settles down to
the minimum approximately for ln(k/k→) > 12 implying !2

Sω
(k) is approximately flat for

ln(k/k→) > ln(kc/k→) = 12. Choosing k→ = 20 Mpc↑1, this implies a flattening for k > kc
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As radial mode rolling down, , 
Fluctuation becomes larger.

s → fa
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Figure 13. The primordial curvature perturbation for the NANOGrav benchmark. The initial
isocurvature perturbation can be obtained based on Eqs. (3.11) and (4.8). See text for more details.
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Figure 14. SGWB spectrum for the NANOGrav benchmark in solid blue. The spectrum in the
absence of EMD, but with the same primordial curvature perturbation, is shown in dot-dashed blue.
The NANOGrav data is taken from [55].
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work, we have explored several mechanisms that give rise to a curvature perturbation much

– 22 –

10�4 10�1 102 105 108 1011 1014 1017

k [Mpc�1]

10�10

10�8

10�6

10�4

10�2

�
2 ⇣
(k

)

PBH

F
IR

A
S

P
IX

IE

S
u
p
er

-P
IX

IE

P
T
A

A
st

ro
M

Planck Ly� k d

Figure 13. The primordial curvature perturbation for the NANOGrav benchmark. The initial
isocurvature perturbation can be obtained based on Eqs. (3.11) and (4.8). See text for more details.

10�10 10�9 10�8 10�7 10�6

f [Hz]

10�18

10�16

10�14

10�12

10�10

10�8

10�6

10�4

�
G

W
,0
(k

)h
2

NANOGrav 15yr

benchmark

pure RD ker.

Figure 14. SGWB spectrum for the NANOGrav benchmark in solid blue. The spectrum in the
absence of EMD, but with the same primordial curvature perturbation, is shown in dot-dashed blue.
The NANOGrav data is taken from [55].
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Figure 9. SGWB spectrum for the Stochastic Curvaton Scenario (Scenario 1) with the curvature
perturbation given in Fig. 3. We choose ω = 0.1, consistent with the CMB and Lyε constraints. In
dot-dashed (‘pure RD ker.’), we show the result for a pure RD era using the standard RD kernel to
compute !GW, keeping ”2

ω(k) the same. As expected based on Fig. 8, the EMD enhances the peak
while suppressing the tail, due to entropy dilution from particle decay. We show the sensitivity curves
for SKA, µARES, LISA, BBO, DECIGO, DO Optimal (DO-opt), AEDGE, ET [90], Asteroid [91],
Ultimate DECIGO (ulti-DECIGO) [92].
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Figure 10. Same as Fig. 9 but for the Misaligned Curvaton Scenario (Scenario 2) with the curvature
perturbation given in Fig. 4.

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
59.2 1.18 → 1022 3.14 → 108 4.0 → 107

The dynamics of the radial mode is shown in Fig. 12 and the primordial curvature perturba-
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χ0,end = fa = 0.6H, H = 1.9 × 1012 GeV, m = 0.05H, λΦ = 0.75
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Conclusions

SM is complete. But new physics is clearly 
needed. We are in the “after the SM” era.


One place where new physics happens is early 
universe: inflation, dark matter, baryon asymmetry.



Conclusions

Gravitational wave offers a new and unique 
window into early universe.


Inflationary dynamics, phase transitions, 
defects, …


Beginning of a new era. More exciting work ahead.
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Beginnings of exciting times
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We are at a similar historical juncture for gravitational waves
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From topological defects

3

Figure 2. Evolution of the � field in scenario (A) for ln a/ac =
1.3, 2.3, 3.3 and 4.3, where the x and y axes show the comoving
coordinates in the unit of a�1

c m
�1
KZ, and the z axis shows �/v.

The parameters in the potential are the same as in Fig. 1.

Figure 3. Evolution of the � field in scenario (B), the labels
of the axes are the same in Fig. 2. The parameters in the
potential are the same as in Fig. 1.

GW PRODCTION

The Fourier modes of the tensor perturbation,
h̃ij(⌧,k), satisfy the linearized Einstein equation

h̃
00
ij(⌧,k) +

2a0

a
h̃
0
ij(⌧,k) + k

2
h̃ij(⌧,k) = 16⇡GN T̃

TT
ij (⌧,k) ,

(6)

where T̃TT
ij is the transverse, traceless part of the energy-

momentum tensor. During inflation, when h̃(⌧,k) leaves
the horizon (k|⌧ | < 1), they will be frozen to a fixed
value h̃

f (k). After inflation, when the mode reenters the
horizon, h̃f will serve as the amplitude for later evolution.
Then the general form of h̃(⌧,k) is

h̃ij(⌧,k) = h̃
f
ij(k)Ẽ

i
0
(k)a�1 sin(k⌧ + �) , (7)

where Ẽ
i
0
and � are determined by the evolution of the

universe before the mode reenters the horizon. The de-
tailed form of Ẽ i

0
(k) and � can be found in [45]. Then we

calculate the GW energy density spectrum,

d⇢GW

d ln k
=

k
5
|Ẽ

i
0
(k)|2

64⇡3GNa4

h|h̃
f
ij(k)|

2
i

V
, (8)

where GN is the Newton gravity constant, and V is the
total comoving volume which will be canceled by the
same volume factor in h|h̃

f
ij(k)|

2
i.

Using the Green’s function method, we can calculate
h̃
f [44, 45],

h̃
f
ij(k) =

16⇡GN

k

Z
0

�1
d⌧

0
K(k⌧ 0)T̃TT

ij (⌧ 0,k) , (9)

where K is the integral kernel,

K(⌘) =
1

⌘

✓
cos ⌘ �

sin ⌘

⌘

◆
. (10)

Eq. (9) indicates that during inflation because the time
translation symmetry is badly broken, GWs can even be
produced by a stationary source. The plot of K is shown
in Fig. 4, from which we can see that the highest peak of
K is around k⌧

0
⇡ �2, and this is the moment T̃TT

ij (⌧ 0,k)

contributes most to h̃
f
ij(k).

Figure 4. The kernel K as a function of ⌘ ⌘ k⌧ .

After doing a small k⌧ 0 expansion in the integral (9),
we can see that the integral is finite at ⌧ 0 = 0, and thus
the integral is mostly contributed in the region k⌧

0
⇠ �2.

Fig. 5 shows the spectrum of |h̃f
ij |

2
/V accumulated from

⌧c to ln(a/ac) = 1.3, 2.3, 3.3, 4.3 for both scenarios (A)
and (B). One can see that the GW productions for both
scenarios stop at about four e-folds after the phase transi-
tion. Th As comparisons, we also did simulations without
DW formations. We use the same parameters in the sim-
ulations without DW formation to generate the initial
configuration �(x) induced by the exponential growth.
Then we replace �(x) with |�(x)| for the initial condi-
tion for the nonlinear growth. This way, we eliminate
all the DWs while keeping the initial fluctuations of the
� field. The green curves in Fig. 5 show the accumu-
lated |h̃ij |

2
/V without DWs for both scenarios (A) and

4

Figure 5. The spectrum of h|h̃f
ij |

2i for scenarios (A) (up) and
(B) (down). The choices of parameters in the potential are
the same as in Fig. 1. The spectrum is shown accumulated
up to ln(a/ac) = 1.3, 2.3, 3.3 and 4.3. As a comparison, the
spectrum without DW production is also shown by the green
curves, where for both (A) and (B), the ln(a/ac) = 2.3, 3.3, 4.3
curves are identical, which indicates that the GW production
ceases completely after ln(a/ac) = 2.3.

(B), in which the green curves for ln(a/ac) = 2.3, 3.3, 4.3
are identical in both scenarios. The coincidences indicate
that without DWs, the GW production stops at about
ln(a/ac) = 2.3 because the oscillations of � are quickly
damped by the Hubble expansion, as shown in Fig. 1.
This also agrees with the result in [31]. From Eq. (5),
one can also see that without DWs, the GW spectrum
would be significantly smaller. Therefore, in the simula-
tion, the DWs are the dominant source for the SGWB.

DETECTABILITY OF THE GW SIGNAL

Today’s GW relative abundance can be calculated
from Eq. (8),

⌦GW(f) = ⌦R ⇥ ⇢
�1

R

d⇢GW

d ln f

����
today

, (11)

where ⌦R and ⇢R are today’s radiation abundance and
energy density. f = k/(2⇡atoday) gives today’s GW fre-

quency. The detailed shape of ⌦GW(f) also depends on
the universe’s evolution when the GW modes reenter the
horizon. From the end of inflation to the completion
of reheating, the universe may undergo some transition
eras, such as matter domination and kination domina-
tion [51, 52]. As shown in the appendix (see also in [45]),
the peak value of ⌦GW(f) is not sensitive to the uni-
verse’s evolution when the modes are outside the horizon.
During kination domination, the total energy density of
the universe drops as a

�6, whereas the energy density
of GW drops as a

�4, and therefore ⌦GW(f) gets a rel-
ative enhancement [53, 54]. On the other hand, if the
GW modes reenter the horizon in an intermediate mat-
ter dominated era before reheating, the total energy of
the universe drops as a

�3. Thus ⌦GW, in this case, ob-
tains a relative suppression.
From qualitative arguments and numerical simulations

in the appendix, we can derive a semi-analytical formula
for the peak value of ⌦GW,

⌦peak

GW
= ⌦R ⇥A(Hdw)

2
⇥

✓
�⇢

⇢inf

◆2

z
↵
mp

, (12)

where dw is the physical wall thickness at ⌧ = �2/mKZ.
zmp in (12) measures the redshift of the universe between
the time the peak mode reenters the horizon and the end
of the intermediate stage. The following table presents
the values of A and ↵ for scenarios (A) and (B) and for
di↵erent intermediate stages before reheating.

A IRH MD (↵ = �1) KD (↵ = 2)

Scenario A 0.15 0.09 0.2
Scenario B 0.3 0.15 0.3
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Figure 6. Spectrums of today’s SGWB energy density distri-
bution for scenario (B), together with the sensitivity curves of
future GW detectors and the region favored by the NanoGrav
observation.

Future GW detectors can detect SGWB produced dur-
ing inflation by the DWs. Fig. 6 shows today’s SGWB

H. An and C. Yang, 2304.02361 

Domain wall from a 2nd order phase transition as source for GW.



Stochastic method
The spectrum of its fluctuation on large scales  
can be studied by stochastic method

Starobinsky and Yokoyama, 1994
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” theory. We consider the following theory as a concrete

example of the spectator field:

L =
1

2
(@�)

2 � 1

2
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2
�
2 � �

4
�
4
. (2.23)

Results: eigenvalues and eigenfunctions + power spectrum

2.3 Cosmological History and Curvature Perturbation

In this subsection we discuss a cosmological scenario in which the curvature perturbation
on large scales is controlled by the inflaton field �. This perturbation is slightly red-tilted,
as required by CMB observations. On the other hand, the curvature perturbation on small
scales is controlled by a spectator field � which gives rise to a blue-tilted spectrum. This
blue-tilted spectrum originates from stochastic fluctuations of �, as we discuss now.

A brief history of the early Universe in our scenario is as follows. Background dynamics
is driven by the inflaton field during inflation and � behaves as a spectator field with subdom-
inant energy density. � acquires stochastic fluctuations during inflation and becomes frozen
with some root mean square equilibrium displacement away from the minimum. After the
end of inflation, inflaton reheats into radiation which dominates the energy density while �

keeps diluting as a cosmological constant. As the Hubble scale falls below the effective mass
of �, it starts oscillating around its potential. Eventually � decays into radiation, following
which the evolution of the Universe becomes standard.

As a concrete example let us consider the model considered in (2.23). At the end of
inflation, the spectator field gets localized to the minimum of its potential, h�ei = 0. However,
it has a non-zero field variance h�2

e i 6= 0. The subscript ‘e’ denotes end of inflation. Total
energy density carried by � at the end of inflation is then given by,

⇢�,e =
1

2
m

2h�2
e i+

�

4
h�4

e i '
1

2
m

2h�2
e i+

�

4
h�2

e i2, (2.24)

where we assume negligible non-Gaussianity in the second equality. [SK: I don’t think we
should make this assumption since we can do the full computation anyways.] Depending on
the relative size of the effective mass [SK: probably need an expression] compared to the
Hubble parameter, the energy density in � redshifts in different ways. In its early stages,
it behaves as a cosmological constant. Subsequently it dilutes as radiation, and finally as
pressure-less dust before decaying into SM radiation,

⇢�(t) =

8
><

>:

⇢�,e , me↵ . H

⇢�,e(a/a1)
�4

, me↵ & H and m .
p

�h�2i/2
⇢�,e(a2/a1)

�4
(a/a2)

�3
, me↵ & H and m &

p
�h�2i/2.

(2.25)

[SK: If we do not use the above and the below equations, may be we can remove them.]
The first transition happens when me↵ = H, i.e. m

2
+ 3�h�2

e i = H
2 which in a radiation

dominated universe implies

a1

ae
=

✓
H

2
e

m2 + 3�h�2
e i

◆1/4

'
✓

H
2
e

3�h�2
e i

◆1/4

(2.26)

For the second equality, we use the fact that self-interaction energy is dominant. The second
transition happens when m =

p
�h�2i/2. We have h�2i / a

�2 during the radiation phase to

– 5 –

with  m < H

Starobinsky and Yokoyama, 1994; Markkanen, Rajantie, Stopyra, Tenkanen, 1904.11917
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Substituting eq. (2.39) gives
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. (2.43)

At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,

Pf (k) ⇠
2

⇡
Af� [2 � (nf � 1)] sin
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2

◆✓
k

H

◆
nf�1

⇡ Af (nf � 1)

✓
k

H

◆
nf�1

, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1

2

⇢
@2

@�2
�

✓
4⇡2

3H4

◆2�
m4�2+2�m2�4+�2�6

�
+

4⇡2

3H4

�
m2+3��2

��
 n(�) = �

4⇡2

H3
⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
@2

@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where

x ⌘
�1/4

H
�, ↵ ⌘

m2

p
�H2

, (3.4)

and

U(↵; x) =

✓
4⇡2

3

◆2

x2
�
↵+ x2

�2
�

4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer

After exit, damping 
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Consider the mode with physical momentum k(t). The mode exits the horizon when k(t⇤) = H.

At later time t, the physical momentum becomes

k(t)

k(t⇤)
=

k(t)

H
= exp(�H(t� t⇤)). (1)

For the fluctuation of a light (but massive) field �. When a certain mode with physical

momentum k(t) is exiting the horizon, its amplitude is �(t⇤). At the same time, the amplitude

will decrease (albeit slowly since m� < H) since the field is massive. We take the evolution of the

amplitude obeys the classical equation of motion (assuming free field without self-interaction for

simplicity)

�̇ = �m
2
��

3H
. (2)

Then, the amplitude is
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3H
(t� t⇤)

◆
= �(t⇤) [exp (�H(t� t⇤))]

m
2
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H
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2
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, (3)

where we used Equation 1 in the last step. From this, we conclude
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Substituting eq. (2.39) gives
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At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,
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where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1

2

⇢
@2

@�2
�

✓
4⇡2

3H4

◆2�
m4�2+2�m2�4+�2�6

�
+

4⇡2

3H4
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 n(�) = �
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H3
⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
@2

@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where

x ⌘
�1/4
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p
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, (3.4)

and
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3

◆2

x2
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�2
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3

�
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�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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After inflation
3

its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

Clarifications on the notations. (1) Perturbed FRW

metric. Comment on hij vs
1

2
hij . (2) Fourier transform

convention. Comment on (2⇡)3 vs (2⇡)3/2 in the litera-
ture.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

100 101 102 103

t
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10�1

� �
(t

)a
(t
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m2/H2 = 0.005, � = 1

m2/H2 = 0.2, � = 0.05

Radiation

Figure 1. Time evolution of scalar field energy density ⇢�(t).
In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence

Eventually,  
evolve like matter 

Can become important

decay
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its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.
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metric. Comment on hij vs
1
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hij . (2) Fourier transform

convention. Comment on (2⇡)3 vs (2⇡)3/2 in the litera-
ture.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1
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2 +
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The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.
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Figure 1. Time evolution of scalar field energy density ⇢�(t).
In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1
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�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence

Eventually,  
evolve like matter 
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upper bound [1], ⇢end ' Vk/100, motivated by simple
slow-roll inflation models, and w ⇡ 0 [23–25].2 Then
depending on the reheating temperature, we get

N(k) =

(
62, TRH = 6 ⇥ 1015 GeV,

59, TRH = 1011 GeV.
(55)

For the first benchmark, we have assumed an instan-
taneous reheating after inflation, while for the second
benchmark, the reheating process takes place for an
extended period of time. For these two benchmarks,
kend ⇡ 4 ⇥ 1023 Mpc�1 and 1022 Mpc�1, respectively.

To determine �2

⇣
(k), we also need to evaluate f� as a

function of time. We can express the time dependence of
f� in terms of k in the following way. A given k-mode
re-enters the horizon when k = akHk, and assuming ra-
diation domination, we get k/kend = aend/ak. Since f�

increases with the scale factor before � decay, we can ex-
press f�(t) = f�(td)(kd/k), for t < td, where kd and k

are the modes that re-enter the horizon at time td and
t, respectively. Therefore, the final expression for the
curvature power spectrum at the time of mode re-entry
follows from eq. (7),

�2

⇣
(k) =

8
><

>:

�2

⇣r
(k) +

⇣
f�(td)

4+3f�(td)

⌘2

�2

S�
(k), k < kd,

�2

⇣r
(k) +

⇣
f�(td)(kd/k)

4+3f�(td)(kd/k)

⌘2

�2

S�
(k), k > kd.

(56)

To determine the scale kd, we consider the benchmarks
discussed above, along with some additional choices for
other parameters.

a. Benchmark 1. We focus on the first benchmark
in eq. (55). For m

2 = 0.2H2 and � ' 0.05 � 0.1, we get
hV (�)i ⇡ 0.02H4 from eq. (41), implying hV (�)i/Vk ⇡
3⇥10�12 for H = 5⇥1013 GeV. Assuming instantaneous
reheating, and ⇢end ' Vk/100, we see f� ' 1 for a '
(1/3) ⇥ 1010aend. As benchmarks, we assume � decays
when f� = 1 and 1/3. Using kend ⇡ 4 ⇥ 1023 Mpc�1,
we can then evaluate kd ⇡ 1014 Mpc�1 and kd ⇡ 3 ⇥
1014 Mpc�1, respectively. The result for the curvature
power spectrum with these choices is shown in fig. 2.

b. Benchmark 2. We now discuss the second bench-
mark in eq. (55). We again choose m

2 = 0.2H2 and
� ' 0.05 � 0.1, for which we get hV (�)i ⇡ 0.02H4

from eq. (41). This implies hV (�)i/Vk ⇡ 3 ⇥ 10�12 for
H = 5⇥1013 GeV, as before. The rest of the parameters
can be derived in an analogous way, with one di↵erence.
During the reheating epoch, with our assumption w ⇡ 0,
f� does not grow with the scale factor since the dominant
energy density of the Universe is also diluting as mat-
ter. Accounting for this gives kd ⇡ 8 ⇥ 1011 Mpc�1 and
kd ⇡ 3 ⇥ 1012 Mpc�1, for f� = 1 and 1/3, respectively,
with the resulting curvature power spectrum shown in
fig. 3.

2
The precise value of w is model dependent, see, e.g., [26–30]

and [31] for a review.
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Figure 2. The power spectrum of curvature perturbations for
benchmark 1 with various choices for the quartic coupling �

and decay constant f�. We label the momentum kd at which
the spectrum reaches its peak. We can see that the amplitude
of this peak increases with decreasing � and/or increasing f�.
Signals for all choices may be accessible to super-PIXIE, with
maximum signals possibly reaching PTAs.
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Figure 3. The power spectrum of curvature perturbations
for benchmark 2 with the same choices of � and f� as fig. 2.
Crucially, this benchmark lowers the number of e-folds during
inflation in comparison to benchmark 1, and results in signals
with decreased amplitude that are shifted toward lower k,
increasing their visibility to near-future detectors. In partic-
ular, a power spectrum with � ⇡ 0.05 and f� = 1 may be
accessible to PIXIE.
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Figure 2. Evolution of energy density in (decaying) matter and radiation. The conformal times
ωEMD, ω̃d, and ωd denote the onset of EMD, the decay time of ε and the end of EMD, respectively.
The total energy densities (sum of matter and radiation) at these three times are ϑEMD, ϑ̃d, and ϑd,
respectively, and are indicated by the horizontal lines with the corresponding numerical values. While
these absolute values are not relevant, their ratios determine the relevant cosmology, as discussed in
the text.

4.2 Scenario 2

Combining Eqs. (3.9) and (3.12), we determine the isocurvature power spectrum

!2

Sω
(k) =

H
2

ϖ2ε̃
2

0,end

(
k

kend

)
2m

2
/(3H

2
)

, (4.7)

with ε̃0,end is the curvaton field value at the end of inflation. The energy density in the
curvaton field at the end of inflation is given by ϑω,end → (1/2)m2

ε̃
2

0,end
. Since this can be

much larger than H
4, both kEMD (Eq. (4.4)) and kd (Eq. (4.4)) can be much larger than the

previous case.

Benchmark. For this we consider the same values of H, ϑend, TRH, ϑd, and ϑ̃d as the
previous scenario. Then for m

2 = 0.4H2 and ε̃0,end = 3H, we get

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
60.6 4.6 ↑ 1022 5.4 ↑ 1014 6.9 ↑ 1013

We show the resulting spectrum in Fig. 4. The shape is the same as Fig. 3, while the location
of the peak changes and the peak magnitude is now given by !2

ε
→ 5 ↑ 10→6.

4.3 Scenario 3

As explained in Sec. 3.3, in this scenario we expect an almost scale-invariant spectrum of
!2

Sω
for k > kc; the benchmark example associated with Fig. 1 implies kc → 3.2↑ 106 Mpc→1
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Figure 8. Shape of SGWB from a scale invariant power spectrum normalized to have !2
ω(k) = 1.

The dot-dashed line shows the result for the pure RD era. For small values of k ↭ Hd that reenter
the horizon after the end of EMD, the result is the same as the pure RD era, as expected. For much
larger k ↫ HEMD, the modes reenter the horizon prior to the onset of the EMD era. Since most of the
contribution to SGWB comes from horizon crossing time, we again expect a flat spectrum, which is
seen for k ↫ HEMD. However, due to entropy injection from particle decay, SGWB gets diluted and
”GW is smaller. For Hd ↭ k ↭ HEMD, the e#ect of EMD is most prominent. This region also shows
that the full contribution (solid yellow), including both the Newtonian potential and relative velocity
perturbation, is larger than the contribution from Newtonian potential alone (dotted blue).

since the onset of the EMD happens earlier. Correspondingly, a di#erent set of GW detectors,
especially focused on the deci-Hz regime, become relevant.

We show the results for scenario 3 for the two benchmarks discussed in Sec. 4: bench-
mark (a) and benchmark (b), in Fig. 11. While the shapes are similar, benchmark (a) gives a
larger SGWB spectrum due to a smaller value of ω0,end which the signal is inversely propor-
tional to. Due to the flat spectrum for low frequencies, we typically expect to see the signal
in multiple detectors, which could aid in discriminating the signal against the astrophysical
foregrounds.

6.2 Application to the Recent PTA Observations

So far our discussion has been general and we have given example benchmarks for the various
scenarios described above. In this subsection, we apply Scenario 3 to the recent PTA ob-
servations, focusing on the NANOGrav data [16, 55]. To obtain a larger strength of SGWB
than considered in Fig. 11, we consider a smaller value of ω0,end = 0.6H. This means ω2

0
and

→(εω)2↑ are comparable and we evaluate !2

Sω
as per Eq. (3.11). We also replace the constant

ω0 by ω0,end+ω0,→(k/k→)ω↑3/2, as in Eq. (4.8), to capture the motion of the radial mode. Here
we follow the same notation as Sec. 4.3. Namely, ω0,end and ω0,→ denote the field value of the
normalized Goldstone field after the radial mode has settled into its minimum and the time
when the mode k→ exits the horizon, respectively. In particular, we assume the misalignment
angle ϑi = 1, implying ω0,end = fa = 0.6H. We choose H = 1.9 ↓ 1012 GeV during inflation,
indicating TRH ↔ 3.6 ↓ 1014 GeV, along with m = 0.05H, ω0,→ = 3.6 ↓ 104

H, ϖ! = 0.75, and
k→ = 50 Mpc↑1. This implies

– 19 –

More generally, can consider the case scalar perturbation 
dominates (curvaton-like). 
Larger signal, interesting spectral shape. 
To treat this properly, much care is needed, numerically 
challenging.

 Soubhik Kumar, Hanwen Tai, LTW, 2410.17291
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4.2 Scenario 2

Combining Eqs. (3.9) and (3.12), we determine the isocurvature power spectrum
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with ε̃0,end is the curvaton field value at the end of inflation. The energy density in the
curvaton field at the end of inflation is given by ϑω,end → (1/2)m2

ε̃
2

0,end
. Since this can be

much larger than H
4, both kEMD (Eq. (4.4)) and kd (Eq. (4.4)) can be much larger than the

previous case.

Benchmark. For this we consider the same values of H, ϑend, TRH, ϑd, and ϑ̃d as the
previous scenario. Then for m

2 = 0.4H2 and ε̃0,end = 3H, we get

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
60.6 4.6 ↑ 1022 5.4 ↑ 1014 6.9 ↑ 1013

We show the resulting spectrum in Fig. 4. The shape is the same as Fig. 3, while the location
of the peak changes and the peak magnitude is now given by !2

ε
→ 5 ↑ 10→6.

4.3 Scenario 3

As explained in Sec. 3.3, in this scenario we expect an almost scale-invariant spectrum of
!2

Sω
for k > kc; the benchmark example associated with Fig. 1 implies kc → 3.2↑ 106 Mpc→1
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The dot-dashed line shows the result for the pure RD era. For small values of k ↭ Hd that reenter
the horizon after the end of EMD, the result is the same as the pure RD era, as expected. For much
larger k ↫ HEMD, the modes reenter the horizon prior to the onset of the EMD era. Since most of the
contribution to SGWB comes from horizon crossing time, we again expect a flat spectrum, which is
seen for k ↫ HEMD. However, due to entropy injection from particle decay, SGWB gets diluted and
”GW is smaller. For Hd ↭ k ↭ HEMD, the e#ect of EMD is most prominent. This region also shows
that the full contribution (solid yellow), including both the Newtonian potential and relative velocity
perturbation, is larger than the contribution from Newtonian potential alone (dotted blue).

since the onset of the EMD happens earlier. Correspondingly, a di#erent set of GW detectors,
especially focused on the deci-Hz regime, become relevant.

We show the results for scenario 3 for the two benchmarks discussed in Sec. 4: bench-
mark (a) and benchmark (b), in Fig. 11. While the shapes are similar, benchmark (a) gives a
larger SGWB spectrum due to a smaller value of ω0,end which the signal is inversely propor-
tional to. Due to the flat spectrum for low frequencies, we typically expect to see the signal
in multiple detectors, which could aid in discriminating the signal against the astrophysical
foregrounds.

6.2 Application to the Recent PTA Observations

So far our discussion has been general and we have given example benchmarks for the various
scenarios described above. In this subsection, we apply Scenario 3 to the recent PTA ob-
servations, focusing on the NANOGrav data [16, 55]. To obtain a larger strength of SGWB
than considered in Fig. 11, we consider a smaller value of ω0,end = 0.6H. This means ω2

0
and

→(εω)2↑ are comparable and we evaluate !2
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as per Eq. (3.11). We also replace the constant

ω0 by ω0,end+ω0,→(k/k→)ω↑3/2, as in Eq. (4.8), to capture the motion of the radial mode. Here
we follow the same notation as Sec. 4.3. Namely, ω0,end and ω0,→ denote the field value of the
normalized Goldstone field after the radial mode has settled into its minimum and the time
when the mode k→ exits the horizon, respectively. In particular, we assume the misalignment
angle ϑi = 1, implying ω0,end = fa = 0.6H. We choose H = 1.9 ↓ 1012 GeV during inflation,
indicating TRH ↔ 3.6 ↓ 1014 GeV, along with m = 0.05H, ω0,→ = 3.6 ↓ 104

H, ϖ! = 0.75, and
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