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Introduction

why (neutron) beta decay?

▶ background: discovery of parity violation and the neutrino
▶ historical developments:

▶ Fermi interaction to describe decay
▶ Fermi function to account for long distance corrections

▶ status today: precision observable
▶ experiment1: τn = 877.82(30)s
▶ theory: probe of fundamental parameter of Standard Model

|Vud | and, therefore, CKM unitarity

1arXiv:2409.05560 (Musedinovic, et.al.)
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Fermi function2

▶ radiative corrections: large Z , small electron velocity β
corrections treated using Fermi function

▶ neutron beta decay: Z small and β large

▶ corrections to Γn:

δΓn = 1 + 4.6α+ 16α2 + 35α3

α2 term beyond permille level experimental precision and
expansion not controlled beyond order α

0
What replaces the Fermi function for neutron beta decay?

2Z.Phys. 88 (1934) 161-177
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Method

▶ EFT: widely separated energy scales =⇒ effective field
theories

▶ factorization: calculate objects in sequence of EFTs

▶ resummation: QFT analog of Fermi function for neutron beta
decay associated with renormalization group resummation

▶ neutron lifetime: long-distance corrections from product of
factorized contributions; combine with short-distance
corrections to get Γn→peν , τn and |Vud |
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Physical Setup

energy scales and parameters
▶ nucleon mass M ∼ 1 GeV

▶ nucleon mass difference
MN −MP = ∆ ≳ 1 MeV

▶ electron mass m ≲ 1 MeV

▶ electron energy E :
m ≤ |E | ≤ ∆

▶ electron velocity

β =
√
1− m2

E2 :
0 < β < 0.92
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Figure: Tree level neutron decay
rate as a function of electron
velocity β. Electron velocity not
small, i.e., Fermi function (valid at
small β) doesn’t apply.
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Heavy Particle EFTs

HPETII

HPETI

QED

m

M

µ

▶ heavy particle effective theory
(HPET): considering a system with
characteristic energy scales below a
particle mass, one can integrate the
heavy particle out

▶ heavy particles described by
two-component spinors, no pair
creation
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Neutron beta decay Lagrangian

▶ below the nucleon mass scale M, neutron beta decay is
described by a four point effective interaction3

Leff = −h̄
(p)
v (CV γµ + CAγµγ5) h

(n)
v ēγµ(1− γ5)νe +H.c.

▶ leading order in M−1 expansion (with ∆ fixed)

▶ h
(n,p)
v two-component spinor which annihilates neutrons,

proton with velocity label v

▶ CV ,A = −
√
2GFVudgV ,A matching coefficients encoding

hadronic structure

3Phys. Rev. Lett. 133 (2024) 2, 021803 (Hill, Plestid)
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Factorization

matrix element factorizes

M ∼ MUV(µ
2
UV)MH(µ

2
UV, µ

2)MS(µ
2)

▶ µUV and µ are factorization scales separating UV, hard and
soft regions; M is µ(UV) independent

▶ MUV related to CV ,A
▶ for small soft cutoff, MS exponentiates, i.e., is known to all

orders from a one-loop calculation

▶ MH extractable from calculations in the literature
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One-loop analysis

▶ focusing on the kinematics, we rewrite the hard amplitude as

MH(w) = MH(−w) + [MH(w)−MH(−w)]

where vµ = (1, 0, 0, 0) in the nucleon rest frame, p is the
electron momentum and w = v · p/m

▶ this corresponds to the sum of a spacelike process
(νep → ne−) plus all possible insertions of a Z = +1
background field4

= + + · · ·

4Phys. Rev. D 109 (2024) 11, 113007 (Borah, Hill, Plestid); JHEP 07
(2024) 216 (Plestid)
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π enhancements at one loop

▶ amplitude is function of logs of w

▶ spacelike amplitude MH(−w) has kinematic divergence as
w → ∞ but is well behaved for w ∼ 1

▶ timelike amplitude MH(w) contains factors ∼ π2 even in
regime without kinematic enhancements

MH(w)−MH(−w) ⊃ α

2π

[
iπw√
w 2 − 1

(
log

(
−4p2 − i0

µ2

)
− 1

)]
▶ such large π enhancements can be eliminated by setting
µ2 = −4p2 − i0

0
idea: resum large π’s by evaluating MH at µ2 = −4p2
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Renormalization analysis
▶ evolution of MH(µ

2) given by

MH(µ
2)

MH(µ̂2)
= exp

[
α

2π

(
−1 +

1

2β
log

1 + β

1− β

)
log

µ2

µ̂2

]
exp

[
−iα

2β
log

µ2

µ̂2

]
.

▶ for µ2 = 4p2 and µ̂2 = −4p2 − i0, log µ2

µ̂2
= +iπ,first

exponential is a phase and hard function
(H(µ2) = |MH(µ

2)|2) receives a numerical enhancement of

H(4p2)

H(−4p2 − i0)
= exp

[
πα

β

]
▶ enhancements associated with Fermi function due to

renormalization group resummation; differs from
non-relativistic Fermi function at order

FNR =

2πα
β

1− exp
(
−2πα
β

) = 1 +
πα

β
+

1

3

π2α2

β2
+ . . .
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Factorization

▶ for hierarchy M > m, hard-soft factorization:

|M|2 ∼ H(µ2)S(µ2)

▶ hard function: H(µ2) encodes physics below the scale M
▶ soft function: S(µ2) encodes physics below the scale m

▶ for hierarchy E > m, hard-jet-remainder factorization:

H(µ2) = |FH(E , µ)|2|FJ(m, µ)|2|FR(w ,m, µ)|2

▶ FH(E , µ) encodes physics below M and above m
▶ FJFR(w ,m, µ) encodes physics of the scale m
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Diagramatic factorization

▶ how to get H(µ2) and S(µ2)?

▶ consider a sequence of effective field theories

→ →

in which the mass M of the nucleon and m of the electron are
successively integrated out
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HQET to QCD matching5

matching coefficient for heavy-
light current between QCD and
HQET known to two loops

C (µ) = 1+
α

4π

(
3

2
LM − 4

)
+· · ·

where LM = log M2

µ2

5Phys. Rev. 52 (1995) 4082-4098 (Broadhurst, Grozin)
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Heavy-light form factors in QCD6

heavy-light form factors (for
massless light particle) known to
two loops

lim
M→∞

F1 = 1 +
α

4π

(
− 2L2E + 2LE

+
3

2
LM − 6− 5π2

12

)
+ · · ·

where LE = log 2E/µ

(a)

pb

p

q

(b) (c)

(d) (e) (f)

(g) (h) (i)

6Nucl. Phys. B 811 (2009) 77-97 (Beneke, Huber, Li)
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Hard amplitude

▶ ratio limM→∞ F1 to C (µ) gives

FH(−E , µ) = 1 +
α

4π

[
−2L2E + 2LE − 2− 5π2

12

]
+ · · ·

where α is the ne = 1 flavor MS coupling given in terms of
on-shell α as

α = α

(
1− 4ne

3

α

4π
Lm + . . .

)
where Lm = log m2

µ2

▶ FH(−E , µ) related to the spacelike amplitude in a theory
below the nucleon mass (M → ∞) and above the electron
mass (m → 0)
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Soft function

▶ FH(−E , µ) encodes physics below M and above m

▶ FS related to amplitude in a theory in which m is integrated
out, i.e., soft function encodes physics below m

FS ∼

▶ FS = 1 in dim. reg. as all integrals are scaleless; with photon
mass regulator

FS = exp

[
α

4π

(
2(L− 1) log

λ2

µ2

)]
where L = log 2w
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Neutron lifetime

▶ decay rate factorizes and expressed in terms of tree rate as

dΓ

dE
=

(
dΓ

dE

)
tree

S(εγ , µ
2)H(εγ , µ

2)

where εγ is a soft-photon energy cutoff which cancels order by
order between S and H

▶ tree level phase space given by(
dΓ

dE

)
tree

∝ E
√

E 2 −m2(∆− E )2
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Outer corrections

S(µ2)H(µ2) S(−µ2)H(−µ2)
1 0.3 ± 3.5 ± 2.1 34.5 ± 3.6 ± 2.2

1 + H
(1)
V 32.6 ± 0.1 ± 2.2 33.2 ± 0.004± 2.2

1 + H(1) 28.8 ± 0.08± 0.05 29.32 ± 0.02 ± 0.01

1 + H(1) + H
(2)
V 29.04± 0.05± 0.05 29.31 ± 0.02 ± 0.01

Table: Long-distance radiative correction to Γn in units of 10−3. Columns
computed at timelike (left) and spacelike (right) renormalization scale.
Central values evaluated at µ2 = m∆, Λγ = ∆, and µUV = ∆ (where Λγ

parametrizes uncertainty due to imposing cancelation of εγ in H(2));
errors denote scale variation µ = m/2..2∆, and Λγ = ∆/2..2∆.

Resummation of π enhancements in H leads to better convergence.
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Neutron decay width

▶ neutron decay width given by

Γn =
G 2
F |Vud |2∆5

2π3
fstatic(1 + 3λ2)

[
1 + ∆R(µUV)

]
×
[
1 + δR,static + δrecoil + δrad.rec.

]

▶ fstatic = 0.0157528

▶ λ = gA/gV = −1.27641(56)7

▶ ∆R = g2
V − 1 =

45.37(27)× 10−3,8

Quantity Value [10−3]

∆R 45.37± 0.27
δR,static 29.18± 0.07
δrecoil − 2.06
δrad.rec. − 0.08

7Phys. Rev. Lett. 122 (2019) 24, 242501 (Märkisch, et.al.)
8Phys. Rev. D 108 (2023) 5, 053003 (Cirigliano, Dekens, Mereghetti,

lllllllTomalak)
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Neutron lifetime

▶ neutron lifetime given by

τn × |Vud |2(1 + 3λ2)

[
1 + ∆R(µUV = ∆)

][
1 + 27.04(7)× 10−3

]
=

2π3ℏ
G 2

F∆
5fstatic

= 5263.284(17) s

▶ taking the most recent UCNτ average for the neutron lifetime
τn = 877.82(30) s gives

|Vud | = 0.97393(17)τ (35)λ(13)∆R
(3)δR

= 0.97393(41)
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Conclusions

▶ first O(α2) input to the long-distance radiative corrections to
neutron beta decay beyond the Fermi function ansatz

▶ Fermi function replaced by renormalization group running

▶ results include leading contributions and uncertainties from
power corrections and real radiation at two loop order and all
relevant recoil and radiative recoil corrections

▶ complete analysis of the two-loop virtual corrections in the
limit of small m2/∆2

▶ updated, precise determination of |Vud |
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HPET Propagator

▶ consider a nonrelativistic heavy fermion of momentum
p = Mv + k in the limit M → ∞

i
(
/p +M

)
p2 −M2 + iϵ

= i
M (1 + /v) + /k

2Mv · k + k2 + iϵ

=
1 + /v

2

i

v · k + iϵ
+O

(
1
M

)
→

(
12 0
0 0

)
i

v · k + iϵ
=

(
12 0
0 0

)
i

k0 + iϵ

▶ what Lagrangian yields such a propagator?
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HPET Lagrangian9

▶ HPET Lagrangian:

LHPET = ψ†i∂0ψ

where ψ is a nonrelativistic 2-component spinor which
annihilates a heavy particle

▶ derived rigorously at the Lagrangian level by field redefinitions

Lψ = ψ†
{
iD0 +

ck
2M

D2 +
c4

8M3
D4 +

cF
2M

σ · gB

+
cD
8M2

(D · gE− gE ·D)

+ i
cS
8M2

σ · (D× gE− gE×D)
}
ψ

where Ei = Fi0 and Bi = −1
2ϵijkF

jk are electric and magnetic
fields and c are Wilson coefficients

9Phys.Lett.B 167 (1986) 437-442 (Caswell, Lepage), Phys.Rev.D 51 (1995)
1125-1171 (Bodwin, Braaten, Lepage)



24/21

Full HPET Lagrangian

LHPET = LA + Ll + Lψ + Lχ + Lψχ

▶ LA: gauge fields, Ll : light particles, Lψ: heavy particle, Lc
ψ:

heavy antiparticle, Lψχ: fourpoint interactions
▶ antiparticle described by charge conjugate spinors:
ψc = −iσ2χ∗ where χ is a 2 spinor which creates a heavy
antiparticle

▶ imaginary part of Lψχ related to decay width of bound states;
no pair creation or annihilation after integrating out M
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Anomalous dimension of MS

▶ resum from negative to positive µ2 using anomalous
dimension of hard operator

MH(w , µ
2) = exp

[∫ µ2

−µ2
d logµγH

]
MH(w ,−µ2)

▶ product MH(µ
2)MS(µ

2) independent of µ2

▶ scale dependence of soft matrix element given to all orders by
cusp anomalous dimension

d logMS(µ
2)

d logµ2
= − α

2π

[
−1 +

1

2β
log

1 + β

1− β
− iπ

β

]
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Jet and remainder functions10

▶ jet function encodes physics at scale m

FJ(m, µ) = 1 +
α

4π

(
1

2
L2m − 1

2
Lm + 2 +

π2

12

)
+ · · ·

▶ remainder function accounts for different number of
dynamical fermions in two theories, i.e., diagram with fermion
loop in photon propagator

FR(−w ,m, µ) = 1 +

(
ᾱ

4π

)2

(log(2w)− 1) ne

(
−4

3
L2
m − 40

9
Lm − 112

27

)
▶ product FRFJ related to matching from a theory with ne = 1

electrons of mass m to a theory with ne = 0

▶ product FHFRFJ represents the matching coefficient onto
theory in which m is integrated out, i.e., FS

10Phys. Rev. D 95 (2017) 1, 013001 (Hill); see also references in
lllllllarXiv:2501.17916
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Resummation

▶ FH(−E , µ) = FH(E ,−µ) computed for spacelike kinematics;
need to resum from −µ− i0 to µ

▶ large logarithms (∼ π) spoil naive power counting

▶ define (µ̂ = −µ− i0)

log
µ̂2

µ2
=

∫ α(µ̂2)

α(µ2)

dα

β(α)
= −2iπ = −X∗

and assign power counting

|X∗| ∼ α− 1
4

▶ factors α3X 4
∗ numerically relevant at order α2
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Resummation

▶ renormalization group evolution of FH given by

dFH(µ)

dµ
= γcusp log

−2E

µ
+ γψ + γh

where the terms are the massive cusp anomalous dimension
and the light and heavy particle anomalous dimensions,
respectively

▶ solve the renormalization group running including π-enhanced
term of order α3∣∣∣∣ FH(E , µ = 2E)

FH(−E , µ = 2E)

∣∣∣∣2 = ∣∣∣∣ FH(E , µ = 2E)

FH(E ,−µ = 2E)

∣∣∣∣2
= exp

[
− X 2

∗
α

4π
+

32

9
neX

2
∗

(
α

4π

)2

− 8

27
n2
eX

4
∗

(
α

4π

)3

+ . . .

]
,
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Hard function decomposition

▶ decomposition of hard function

H(µ2) = 1 +
α

2π
H(1) +

( α
2π

)2
H(2) + · · ·

= exp

[
πα

β

]
H(−µ2)

=

(
1 +

πα

β
+
π2α2

2β2

)[
1 +

α

2π
Ĥ(1) +

( α
2π

)2
Ĥ(2)

]
+ · · ·

▶ real and virtual parts of H(1) known with full m dependence

▶ virtual part of H(2) known in limit m → 0 from
hard-remainder-jet factorization
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Full one-loop results

▶ full, one-loop hard function

H
(1)
V =3 log

µUV

m
+ log

µ

m

(
2

β
log

1 + β

1− β
− 4

)
+ β log

1 + β

1− β
+

2π2

β

− 2

β
Li2

(
2β

1 + β

)
− 1

2β
log2

(
1 + β

1− β

)
H

(1)
R = log

εγ

∆− E

(
4− 2

β
log

1 + β

1− β

)
+

1

β
log

1 + β

1− β

[
(∆− E)2

12E 2

+
2(∆− E)

3E
− 3

]
− 4(∆− E)

3E
+ 6

▶ soft function

log S(εγ) =
α

2π

[
log

2εγ

µ

(
2

β
log

1 + β

1− β
− 4

)
− 1

2β
log2

(
1 + β

1− β

)
− 2

β
Li2

(
2β

1 + β

)
+

1

β
log

1 + β

1− β
+ 2

]
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Hard function resummation

▶ decompose hard function as

H(µ2) =

∣∣∣∣ FH(µ)

FH(−µ)

∣∣∣∣2 |FH(−µ)|2 |FR(µ)|2 |FJ(µ)|2
▶ eliminate large-π enhancements by evaluating spacelike µ

H(−µ2) = exp

[
−πα
β

] ∣∣∣∣ FH(µ)

FH(−µ)

∣∣∣∣2 |FH(−µ)|2 |FR(µ)|2 |FJ(µ)|2
▶ full amplitude independent of µ

Γ ∼ S(−µ2)H(−µ2)
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Power corrections

▶ to estimate effect of small m expansion, we calculate the
leading two-loop contribution

= −2π4

3

m2

E 2 −m2

( α
2π

)2

▶ which shifts the central value of the outer corrections
29.31 → 29.18; we assign an uncertainty of half this shift

▶ outer corrections given by

δR,static = (29.18± 0.07± 0.01± 0.02)× 10−3
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