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Neutron Lifetime Experiments
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Neutron Lifetime Experiments

beam method

UCN bottle method
UCN storage ring
spacecraft
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Uncertainty < 10 s

neutron lifetime result (s)
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Neutron Lifetime Experiments
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Improved measurements of neutron lifetime with cold neutron beam at J-PARC
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The “neutron lifetime puzzle” arises from the discrepancy between neutron lifetime measurements
obtained using the beam method, which measures decay products, and the bottle method, which
measures the disappearance of neutrons. To resolve this puzzle, we conducted an experiment using a
pulsed cold neutron beam at J-PARC. In this experiment, the neutron lifetime is determined from the
ratio of neutron decay counts to *He(n,p)>H reactions in a gas detector. This experiment belongs
to the beam method but differs from previous experiments that measured protons, as it instead
detects electrons, enabling measurements with distinct systematic uncertainties. By enlarging the
beam transport system and reducing systematic uncertainties, we achieved a fivefold improvement in
precision. Analysis of all acquired data yielded a neutron hfetlme of , =877.2+ 1.7 (stat.) + )
This result is consistent with bottle method measurements but exhibits a 2.30 tension with the
average value obtained from the proton-detection-based beam method.
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Introduction— A neutron decays into three particles, a of ga [7].
proton, an electron, and an antineutrino via weak inter-
actions. The neutron S decay lifetime, 7, is a crucial
parameter that determines the neutron-to-proton ratio

.
.

Neutron lifetime has been measured using two primary
methods. The first is the beam method [8, 9], where
s - neutron [ decay products, specifically protons in these
at the onset of Big Bang nucleosynthesis (BBN) [1, 2]. references, are counted relative to the number of inci-
The combination of the BBN model and the baryon-to- dent neutrons, yielding an average lifetime of 7Peam —
photon ratio derived from the cosmic microwave back- 888.0 4+ 2.0 s. The second is the bottle method [10-
g'round observations [3, 4] })1‘0Vi(1es an accurate predic- 17], which measures the disappearance of ultra-cold neu-
tion of .the abundance 9f light elemenFs, allowmg.t.ests trons (UCNs) confined in a container over time, produc-
of physical phenomena in the early universe. Addition- ing an average value of 7°°%le = 878.4 & 0.5 s. The 9.5-s
ally, the V,q term in the Cabibbo-Kobayashi-Maskawa (4.60) dis
(CKM) matrix can be determined using 7,, and A, which
is the ratio of axial-vector to vector coupling constants,
ga/gv, independently of nuclear models. Revised radia-
tive corrections in 2018 [5] suggested the CKM unitarity
violation exceeding 20 [6], emphasizing the importance
of the measurement of the neutron lifetime. Precise data
on 7, is also valuable for testing lattice QCD calculations

arxiv

repancy between the two methods is known as
the “neutron lifetime puzzle” [18], raising concerns about
the reliability of neutron lifetime measurements.
Possible causes for this discrepancy include unac-
counted systematic uncertainties, such as protons from
neutron decay undergoing charge exchange with residual
gas [19], though this effect is considered negligible [20].
The 9.5-s, approximately 1% discrepancy between beam
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The “neutron lifetime puzzle” arises from the discrepancy between neutron lifetime measurements
obtained using the beam method, which measures decay products, and the bottle method, which
measures the dlsappeau ance of neutrons. To resolve this puzzle we Conducted an exper 1ment using a
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a neutron lifetime Of ™ = 877.2 £ 1. 7(stat ) 3 6(Sys ) S.
measurements but exhibits a 2.30 tension with the
;1on-based beam method.

parameter that determines the neutron-to-proton ratio
at the 011§et O.f Big Bang nucleosynthesis (BBN) [1, 2]. references, are counted relative to the number of inci-
The (:0111])11;1&‘51011. of th‘e BBN model .and .the baryon-to- dent neutrons, yielding an average lifetime of 7Peam —
photon ratio derived from the cosmic microwave back-  ge9 ) 4 9.0 5. The second is the bottle method [10-
ground observations [3, 4] provides an accurate predic- 17], which measures the disappearance of ultra-cold neu-
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of physical phenomena in the early universe. Addition- ing an average value of 7°°%le = 878.4 & 0.5 s. The 9.5-s

ally, the V,q term in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix can be determined using 7,, and A, which
is the ratio of axial-vector to vector coupling constants,
ga/gv, independently of nuclear models. Revised radia-
tive corrections in 2018 [5] suggested the CKM unitarity
violation exceeding 20 [6], emphasizing the importance
of the measurement of the neutron lifetime. Precise data
on 7, is also valuable for testing lattice QCD calculations

neutron [ decay products, specifically protons in these

(4.60) discrepancy between the two methods is known as
the “neutron lifetime puzzle” [18], raising concerns about
the reliability of neutron lifetime measurements.

Possible causes for this discrepancy include unac-
counted systematic uncertainties, such as protons from
neutron decay undergoing charge exchange with residual
gas [19], though this effect is considered negligible [20].
The 9.5-s, approximately 1% discrepancy between beam
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The “neutron lifetime puzzle” arises from the discrepancy between neutron lifetime measurements
obtained using the beam method, which measures decay products, and the bottle method, which
measures the dlsappeau ance of neutrons. To resolve this puzzle we Conducted an e\peument using a

;ijon-based beam method.
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parameter that determines the neutron-to-proton ratio
at the onset of Big Bang nucleosynthesis (BBN) [1, 2].
The combination of the BBN model and the baryon-to-
photon ratio derived from the cosmic microwave back-
ground observations [3, 4] provides an accurate predic-
tion of the abundance of light elements, allowing tests
of physical phenomena in the early universe. Addition-
ally, the V,q term in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix can be determined using 7,, and A, which
is the ratio of axial-vector to vector coupling constants,
ga/gv, independently of nuclear models. Revised radia-
tive corrections in 2018 [5] suggested the CKM unitarity
violation exceeding 20 [6], emphasizing the importance
of the measurement of the neutron lifetime. Precise data
on 7, is also valuable for testing lattice QCD calculations

NIST

neutron [ decay products, specifically protons in these
references, are counted relative to the number of inci-
dent neutrons, yielding an average lifetime of 7Pe*m =
888.0 £ 2.0 s. The second is the bottle method [10-
17], which measures the disappearance of ultra-cold neu-
trons (UCNSs) confined in a container over time, produc-
ing an average value of 2ot = 878.4 + 0.5 s. The 9.5-s
(4.60) discrepancy between the two methods is known as
the “neutron lifetime puzzle” [18], raising concerns about
the reliability of neutron lifetime measurements.

Possible causes for this discrepancy include unac-
counted systematic uncertainties, such as protons from
neutron decay undergoing charge exchange with residual
gas [19], though this effect is considered negligible [20].
The 9.5-s, approximately 1% discrepancy between beam

ylelded x?/DOF

TABLE II
(100 kPa, 50 kPa) and SFC configuration (new, old), with
averages. Units in seconds:

3 6(Sys ) S-

877 2 Z|: 1 7(stat )

Conditions
100 kPa/old SF¢ 870.9
100 kPa/new SEC 868.3
50 kPa/old SFC 868.2
50 kPa/new SFC 884.8

Combined 877.2

Pressure-dependent
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3.5 \+1.8/-2.8
4.0 +1.5/-2.9
7.7 H2.7/-0.9
24 /+0.8/-1.3
1.7

Value Stat.\Cut position Other sys.

¥5.5/-4.9
+3.8/-3.2
+4.8/-3.9
+3.2/-3.0
+4.0/-3.6

systematic?

ties were applied as common shifts. The overall neutron
lifetime result from J—PARC combining all conditions, is
3 6(Sys ). The combining average
15.8/3, though the underlying cause
of this deviation remains undetermined.

Neutron lifetime values for each gas pressure
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a neutron lifetime of 7, = 877.2 -

;ijon-based beam method.
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at the onset of Big Bang nucleosynthesis (BBN) [1, 2].
The combination of the BBN model and the baryon-to-
photon ratio derived from the cosmic microwave back-
ground observations [3, 4] provides an accurate predic-
tion of the abundance of light elements, allowing tests
of physical phenomena in the early universe. Addition-
ally, the V,q term in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix can be determined using 7, and A, which
is the ratio of axial-vector to vector coupling constants,
ga/gv, independently of nuclear models. Revised radia-
tive corrections in 2018 [5] suggested the CKM unitarity
violation exceeding 20 [6], emphasizing the importance
of the measurement of the neutron lifetime. Precise data
on 7, is also valuable for testing lattice QCD calculations
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The “neutron lifetime puzzle” arises from the discrepancy between neutron lifetime measurements
obtained using the beam method, which measures decay products, and the bottle method, which

3 +4.0
- 1-7(stat.) —3.6(sys.) S-
measurements but exhibits a 2.30 tension with the

neutron [ decay products, specifically protons in these
references, are counted relative to the number of inci-
dent neutrons, yielding an average lifetime of 7Pe*m =
888.0 &+ 2.0 s. The second is the bottle method [10-
17], which measures the disappearance of ultra-cold neu-
trons (UCNs) confined in a container over time, produc-
ing an average value of 72°tt1¢ = 878.4 + 0.5 s. The 9.5-s
(4.60) discrepancy between the two methods is known as
the “neutron lifetime puzzle” [18], raising concerns about
the reliability of neutron lifetime measurements.

Possible causes for this discrepancy include unac-
counted systematic uncertainties, such as protons from
neutron decay undergoing charge exchange with residual
gas [19], though this effect is considered negligible [20].
The 9.5-s, approximately 1% discrepancy between beam
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n lifetime result (S)

- Fuwa, et al. (2024)
Table II Data
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Neutron Decay Parameters

Via = Gy/Gp A

CKM unitarity
from V  (PDG 2024)

,  4093.7s
Vud = 7 (1 +3G?)
n A
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Neutron Decay Parameters

Via = Gy/Gp A

CKM unitarity
from V  (PDG 2024)

,  4093.7s
Vud = 7 (1 +3G?)
n A

1150x 10"
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Neutron Decay Parameters

A ("a" only)

superallowed V4
Vud . GV/ GF (PDG 2024)
CKM unitarity
-14. from V  (PDG 2024)
G
A
A=— .
-14.4
Gy

4093.7 s
“d 7, (1 4+ 3G2)

14.6x10°
H-20 11.50x 10"
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Neutron Lifetime Problem

Scientific American, April 2016
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The best experiments in the world ¢
long neutrons live before decaying int
Two main types of experiments are
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New experiments aim to pin do
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Wired, February

How Long Can a Neutron Live? Depends

Two methods of measuring the neutron's longevity give different answers, creating uncertz
what the problem is.

TIME'S UP New experiments aim to resolve a puzzle about how long the neutron takes to decay. At the National Institute of Standards and Technology's Center for
Neutron Research (shown), physicists will monitor a beam of neutrons to determine the neutron’s lifetime.

RONALD CAPPELLETTI/NIST
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PANP 2025, Madison WI

SIGN IN SUBSCRIBE Q

APS News, July 2019

APRIL MEETING

Sorting Out the Neutron Lifetime

BY SOPHIA CHEN

or over a decade, physi-
’: cists have puzzled over the
neutron lifetime: how long,
on average, it takes the isolated
particle to decay into a proton,
electron, and antineutrino. Counting
the number of neutrons in a con-
tainer over time, they measure the
half-life to be about 14 minutes
and 39 seconds. Using a different
experimental method where they
count one of the neutron’s decay
products, they measure the lifetime
to be about 8 seconds longer.

“It’s an exciting time to work
in the field,” says Shannon
Hoogerheide of the National
Institute of Standards and
Technology (NIST). In 2018, three
independent teams of physicists
have published new measurements
of the neutron lifetime, which have
improved precision but preserve
the discrepancy.

During a mini-symposium at
this year’s APS April meeting in
Denver, experts gathered to develop
strategies for resolving the dis-
crepancy, including a tantalizing
theory involving dark matter decay.

But the discrepancy could still be
the result of systematic uncertain-
ties, so some groups are working to
make better measurements.

“We’ve taken more lifetime data
this year, and we’re analyzing it
right now,” says Kevin Hickerson
of the Ultracold Neutron Tau (UCNT)
experiment at Los Alamos National
Laboratory.

Hickerson’s method, a so-
called bottle experiment, involves
counting neutrons over time and
results in the shorter measured
lifetime. He and his colleagues trap
ultracold neutrons at a temperature
of about a millikelvin inside a one-

NIST proton trap for measuring neutron lifetime. A free neutron entering the
trap as part of a beam will decay into a proton, an electron, and an antineutrino.
The number of protons detected can be used to calculate the neutron

lifetime. IMAGE F. WEBBER/NIST

meter diameter container—“the
bathtub,” they call it.

“We fill it with neutrons, and
then we count,” he says. “And we
fill it again, wait longer, and count
again. Then we fit an exponential
to that decay.” The three 2018 mea-
surements, one made by Hickerson’s
group, were all bottle experiments,
albeit with slightly different setups
[Science 360, 627 (2018)].

The other method, known as a
beam experiment, involves counting
the protons that the neutrons decay
into. At NIST, researchers send
a beam of neutrons through an
electromagnetic field, which traps
and then deflects any proton decay
products, explained Hoogerheide.
NIST’s experiment yielded the
most recent beam result in 2005.
Using the same data, they updated
those results with better cali-
bration in 2013, and her team is
currently working to improve that
measurement.

F. E. Wietfeldt

Researchers were particularly
excited to discuss whether the dis-
crepancy arose from an unknown
dark matter decay product. This
theory, proposed by Bartosz Fornal
and Benjamin Grinstein of the
University of California, San Diego,
has the neutron decaying into a
dark matter particle 1 percent of
the time. This particle would have
a mass of about 1 GeV, about 100
times lighter than the weakly inter-
acting massive particles usually
predicted by supersymmetry. If
neutrons occasionally became dark
particles, that would explain why
neutrons disappear more quickly in
the bottle experiment than proton
decay products appear in the beam
experiment. “If this turns out to be
how nature works, this would turn
out to be a very inexpensive way
of trying to probe dark matter,”
says Fornal.

NEUTRON CONTINUED ON PAGE 5
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Exotic particles carrying baryon number and with a mass of the order of the nucleon
proposed for various reasons including baryogenesis, dark matter, mirror worlds, and the
puzzle. We show that the existence of neutron stars with a mass greater than 0.7 M
constraints on such particles, requiring them to be heavier than 1.2 GeV or to have st

self-interactions.

DOI: 10.1103/PhysRevLett.121.061802

Introduction.—Exotic states that carry baryon number
and have masses below a few GeV have been theorized in a
number of contexts, such as asymmetric dark matter [1,2],
mirror worlds [3], neutron-antineutron oscillations [4],
or nucleon decays [5]. In general, such states are highly
constrained, because they can drastically alter the proper-
ties of normal baryonic matter—in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally stable,
because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the lightest
baryon, does not decay (up to effects caused by higher-
dimensional operators that violate baryon number).

Now, consider the simple case of an electrically neutral
single new fermion y that carries a unit baryon number
and carries no other conserved charge. Assuming that its
couplings to ordinary matter are not highly suppressed,
because of the conservation of baryon number and electric
charge, it must have a mass larger than the difference
between the proton and electron masses, m, > m,—
m, = 937.76 MeV, in order to not destabilize the proton.

In fact, a slightly stronger lower bound on m, comes from

the stability of the weakly bound °Be nucleus: m, >
937.90 MeV. If m, > m, = 939.57 MeV, a new neutron
decay channel can open up, n — y + - - -, where the ellipsis
includes other particles that allow the reaction to conserve
(linear and angular) momentum.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOIL. Funded by SCOAP’.
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Neutron lifetime puzzle and neutron-mirror
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Abstract Standard Model, with its present precision, pre-
dicts the neutron S-decay time T = 878.7 + 0.6 s which
is perfectly compatible with the neutron lifetime measured
in the trap experiments Ty, = 879.4 & 0.6 s. However, the
lifetime measured in the beam experiments via counting the
protons produced by B-decay n — pev,, Theam = 888 £2.0
s, is deviated from tgy by 9 seconds (4.40'). This discrepancy
can be explained via the neutron n conversion into mirror neu-
tron n’, its dark partner from parallel mirror sector. Provided
that n and n’ have a tiny mass splitting ~ 10~7 eV, in mag-
netic fields of few Tesla used in beam experiments, n — n’
transition is resonantly enhanced converting a 1% fraction
of neutrons into mirror neutrons which decay in invisible
mode n’ — p’e’V,,. Thus less protons are produced and the
measured value Tpeam appears larger than the true decay time
TSM = Ttrap-

1. Exact determination of the neutron lifetime remains a prob-
lem. It is measured in two types of experiments. The trap
experiments measure the disappearance rate of the ultra-cold
neutrons (UCN) counting the survived UCN after storing
them for different times in material or magnetic traps, and
determine the neutron decay width T, = 7, !. The beam
experiments are the appearance experiments, measuring the
width of B-decay n — pev,,I'g = r/gl , by counting the pro-
tons produced in the monitored beam of cold neutrons. As
far as in the Standard Model (SM) the neutron decay always
produces a proton, both methods should measure the same
value I', = T'g.

However, the tension is mounting between the results
obtained by two methods [1,2]. Presently available exper-
imental results using the trap [3—11] and the beam [12,13]
methods, summarized in Fig. 1, yield separately

Tuap = (879.4 +0.6) s (1)
Theam = (888.0 & 2.0) s
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‘We revisit the neutron lifetime puzzle, a disc
neutron decay. Since both types of measureme
of free neutrons, we argue that the existence of
We elaborate on the required properties of suck
states have not been experimentally identifiec

DOI: 10.1103/PhysRevD.110.073004

I. INTRODUCTION

A. The neutron in the quark model

The neutron is one of the main constituents of nuc
matter. It is a composite state, whose properties are rulec
the strong and the electroweak interactions between
lightest quarks of the Standard Model of particle physics.
of pivotal importance in many phenomena ranging from
bang nucleosynthesis to experimental particle physics |

Even though a detailed understanding of the low en
properties of this particle in terms of fundamental deg
of freedom is an open field of research, it is possibl
understand several properties in terms of much sim
models. In our discussion we will make use of the langt
and notation of the quark model. In this model, protons
neutrons are composite particles made up of qua
Protons consist of a particular combination of two
(u) quarks and one “down” (d) quark, while neuti
consist of combinations of one up quark and two d«
quarks. While quarks carry a fractional electric charge,
combination of quarks in protons and neutrons result
particles with integer electric charges.

Isospin describes the similarity between protons
neutrons. It was introduced by Heisenberg [2] and 1]
developed further by Wigner [3]. Algebraically, the iso:
operator / can be represented analogously to the :

operator of spin one-half particles S in terms of the P
matrices ¢, which are a representation of the group SU
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New results on the two-body decay of neutrons shed new light on

neutron stars

Eugene Oks

Physics Department, 380 Duncan Drive, Auburn University, Auburn, AL, 36849, USA

ARTICLE INFO ABSTRACT

Key words: In attempts to resolve the neutron lifetime puzzle, there was suggested a hypothetical decay of neutrons into
Neutron stars some unspecified dark matter (DM) particles. Later there were performed studies on how the hypothetical decay

Dark matter

Neutron lifetime puzzle
Two-body decay of neutrons
Second flavor of hydrogen atoms
Multi-messenger astronomy

of neutrons would affect neutron stars. Recently it was shown that with the allowance for the second solution of
Dirac equation for hydrogen atoms, the theoretical branching ratio (BR) for the two-body decay of neutrons
(compared to their three-body decay) is amplified by a factor of 3300 from 0.000004. So, the BR becomes about
1.3% in the excellent agreement with the “experimental” BR = (1.15 + 0.27)% required for reconciling the two

distinct experimental values of the neutron lifetime: one from the beam experiments, another from the trap
experiments. This meant that the two-body decay of neutrons in the beam experiments (that count only the
protons) plays a much more sizable part in the overestimation of the lifetime of neutrons in these experiments
than previously thought. Hydrogen atoms corresponding to the second solution of Dirac equations are called the
second flavor of hydrogen atoms (SFHA) by the analogy with the flavors of quarks. The existence of the SFHA is
evidenced by four different types of atomic/molecular experiments. The primary feature of the SFHA is that due
to having only the s-states, they do not emit or absorb the electromagnetic radiation (except for the 21 cm line):
they are practically dark. The SFHA became a candidate for a part of DM for the first time after the SFHA-based
successful qualitative and quantitative explanation of the perplexing observation by Bowman et al. of the
anomalous absorption in the redshifted 21 cm line from the early Universe. In the present paper we analyzed how
this neutron decay into the SFHA affects neutron stars. We showed that old neutron stars could very slowly
generate the new specific, described in detail baryonic DM in the form of the SFHA. Some old neutron stars would
release it into their tiny atmospheres, while some other old neutron stars would release it into the interstellar
medium. Besides, mergers of a neutron star with another neutron star or with a black hole, accompanied by the
ejection of neutron-rich material, can also lead to the formation of SFHA as the ejecta cools down. This is another
interesting aspect of the multi-messenger astronomy focused on studying these mergers through the gravitational
waves they generate. These mechanisms of generating new baryonic DM in the universe should have the
fundamental importance. We point out the indirect observational evidence of the continuing generation of new
baryonic DM. We hope that our results will stimulate a further research in this direction.

1. Introduction

The average measured lifetime (AML) of neutrons is puzzling - see, e.
g., works (Broussard, 2022; Gonzalez, 2021; Serebrov et al., 2021;
Particle Data Group, 2020; Berezhiani, 2019; Tan, 2019; Czarnecki
et al., 2018; Sun, 2018; Tang, 2018; Pattie, 2018): e.g., according to
Gonzalez et al. paper (2021), the AML of trapped ultracold neutrons
Ttrap = (877.75 £ 0.28gtat + 0.22/-0.164y5) s — in contrast to the beam
AML of neutrons Tpeam = 888.0 + 2.0 s. For solving this puzzle, Fornal
and Grinstein (2018) suggested that neutron might decay into an

E-mail address: oksevgu@auburn.edu.

https://doi.org/10.1016/j.newast.2024.102275

unspecified dark matter (DM) particle. Later Grinstein et al. (2019) and
then Husain et al. (2022) explored how this decay channel would affect
neutron stars. The problem still was that the resulting hypothetical DM
particle was not identified. Moreover, Dubbers et al. (2019) showed that
the Branching Ratio (BR) for this process is at least several times smaller
than the BR required for reconciling the experimental values of Tyap and
Theam-

Green and Thomson (1990) brought up the two-body decay of neu-
trons (the decay into a hydrogen atom and antineutrino) into consid-
eration. However, the BR for this process, known at that time, was

Received 22 February 2024; Received in revised form 18 June 2024; Accepted 1 July 2024

Available online 2 July 2024

1384-1076/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.
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The NIST BL1 Experiment

Normalized Proton Counts vs. Trap Length
(32.5 kV; 20 pg/cm Z Au)
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The NIST BL1 Experiment

J. S. NICO et al. PHYSICAL REVIEW C 71, 055502 (2005)

2005 result : 7, = 886.3 + 1.2[stat] £ 3.2[sys]

Error Budget

Source of correction Correction (s) Uncertainty (s) Section

LiF deposit areal density 2.2 IVA
%Li cross section 1.2 11D
Neutron detector solid angle 1.0 IID1
Absorption of neutrons by °Li 0.8 IVA?2
Neutron beam profile and detector solid angle : 0.1 IVA?2
Neutron beam profile and °Li deposit shape : 0.1 IVA?2 :
Neutron beam halo : 1.0 IVB2 COUIEyE
Absorption of neutrons by Si substrate : 0.1 IVA?2

Scattering of neutrons by Si substrate : 0.5 IVA3 proton
Trap nonlinearity : 0.8 IVC
Proton backscatter calculation 0.4 IVD3
Neutron counting dead time : 0.1 11D

neutron counter
efficiency g,

neutron

Counﬁng

Proton counting statistics 1.2 IVD?2
Neutron counting statistics 0.1 11D

Total ) 3.4

N H CIPANP 2025, Madison WI F. E. Wietfeldt 28
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The NIST BL1 Experiment

J. S. NICO et al. PHYSICAL REVIEW C 71, 055502 (2005)

Error Budget

Source of correction Correction (s) Uncertainty (s) Section

61 - . : n I
LiF deposit areal density Alpha Gamma 2.2 IVA neutron counter
0.9
1.0

IID

6 . . ° .
L1 cross section calibration D1 efﬁciency €

Neutron detector solid angle
Absorption of neutrons by °Li +5.2 0.8 IVA?2
Neutron beam profile and detector solid angle +1.3 0.1 IVA?2
Neutron beam profile and °Li deposit shape —1.7 0.1 IVA?2
Neutron beam halo —1.0 1.0 IVB2
Absorption of neutrons by Si substrate +1.2 0.1 IVA?2
Scattering of neutrons by Si substrate —0.2 0.5 IVA3 proton
Trap nonlinearity —5.3 0.8 IVC

Proton backscatter calculation 0.4 IVD3
Neutron counting dead time +0.1 0.1 11D

neutron
Counting

Counﬁng

Proton counting statistics 1.2 IVD?2
Neutron counting statistics 11D

0.1
Total : 2.2 }4

N H CIPANP 2025, Madison WI F. E. Wietfeldt 29
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The NIST BL1 Experiment

J. S. NICO et al. PHYSICAL REVIEW C 71, 055502 (2005)
2013 update : 7, = 887.7 £ 1.2[stat] = 1.9[sys]

Error Budget

Source of correction Correction (s) Uncertainty (s) Section

61 - . : n I
LiF deposit areal density Alpha Gamma 2.2 IVA neutron counter
0.9
1.0

IID

6 . . ° .
L1 cross section calibration D1 efﬁciency €

Neutron detector solid angle
Absorption of neutrons by °Li +5.2 0.8 IVA?2
Neutron beam profile and detector solid angle +1.3 0.1 IVA?2
Neutron beam profile and °Li deposit shape —1.7 0.1 IVA?2
Neutron beam halo —1.0 1.0 IVB2
Absorption of neutrons by Si substrate +1.2 0.1 IVA?2
Scattering of neutrons by Si substrate —0.2 0.5 IVA3 proton
Trap nonlinearity —5.3 0.8 IVC

Proton backscatter calculation 0.4 IVD3
Neutron counting dead time +0.1 0.1 11D

neutron
Counting

Counﬁng

Proton counting statistics 1.2 IVD?2
Neutron counting statistics 11D

0.1
Total : 2.2 }4
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BL3 Experiment

Based on the Sussex-ILL-NIST
beam neutron lifetime program
using a quasi-Penning proton trap.
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BL3 Experiment

Based on the Sussex-ILL-NIST
beam neutron lifetime program
using a quasi-Penning proton trap.

Scientific Goals:

1. Further explore, cross check, and
reduce all systematic uncertainties
to the 10-4 level.
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BL3 Experiment

Based on the Sussex-ILL-NIST
beam neutron lifetime program
using a quasi-Penning proton trap.

Scientific Goals:

1. Further explore, cross check, and
reduce all systematic uncertainties
to the 10-4 level.

2. Reduce the neutron lifetime
uncertainty from the beam
method to <0.3 s.

Tulane . .
University N H CIPANP 2025, Madison WI F. E. Wietfeldt



BL3 Experiment

Beam Method Systematics to Explore /Reduce

® proton backscatter extrapolation

@ absolute neutron counting

® magnetic field homogeneity

@ neutron absorption, scattering in Li foil
@ dependence on neutron collimation

® dependence on residual gas pressure

® dependence on trapping time

o..
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BL3 Experiment

Beam Method Systematics to Explore /Reduce

® proton backscatter extrapolation

@ absolute neutron counting

® magnetic field homogeneity

@ neutron absorption, scattering in Li foil
@ dependence on neutron collimation

® dependence on residual gas pressure

® dependence on trapping time

o..

Need more statistical power to fully
investigate these at the 1 s level
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BL3 Experiment

Beam Method Systematics to Explore /Reduce

® proton backscatter extrapolation

@ absolute neutron counting

e® magnetic field homogeneity

@ neutron absorption, scattering in Li foil
@ dependence on neutron collimation

Need more statistical power to fully
investigate these at the 1 s level

e dependence on residual gas pressure BL3 can makeals
e dependence on trapping time (statistical) neutron lifetime
..

measurement in <1 day.

Tulane : :
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BL3 Experiment

BL3 key features
e Higher flux (NIST NG-C) and larger diameter e High efficiency for detecting backscattered
neutron beam (7 mm — 40 mm) protons (smaller extrapolation to zero
backscatter)
e Longer proton trapping region (35 cm — 50
cm) ® A new, larger 19B Alpha-Gamma spectrometer to
calibrate the neutron counter to relative
e Larger and more uniform magnetic field (<0.2% precision < 3x10-

in trapping region)
@ /n situ neutron time-of-flight system to measure
e Large (10 cm active diameter) segmented the neutron wavelength spectrum to 0.03 A
silicon proton detector (similar to KATRIN, Nab) precision
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BL3 Experiment

BL3 key features
e Higher flux (NIST NG-C) and larger diameter e High efficiency for detecting backscattered
neutron beam (7 mm — 40 mm) protons (smaller extrapolation to zero
backscatter)
e Longer proton trapping region (35 cm — 50
cm) ® A new, larger 19B Alpha-Gamma spectrometer to
calibrate the neutron counter to relative
e Larger and more uniform magnetic field (<0.2% precision < 3x10-

in trapping region)
@ /n situ neutron time-of-flight system to measure

e Large (10 cm active diameter) segmented the neutron wavelength spectrum to 0.03 A
silicon proton detector (similar to KATRIN, Nab) precision

Proton trapping rate >100x higher than in the BL1/BL2 experiment
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BL3 Cryostat

L ._,:,_ .

““neutron beam
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BL3 Magnet

18° angled coll - ) : | | TUlane
b Construction In | University
progress at
trim coils | Cryogenic, Ltd.
main coil / (London)

proton trap

proton
detector

Total magnetic field along field line
on the trap axis

20 40 60
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BL3 Proton Trap

= Tulane
& University

e all dimensionally critical parts
are fused silica (thermal
contraction to 10K < 50 ppm)

e electrodes are gold coated
fused silica

e structural parts are titanium
for low magnetism

spring washers
provide compression

precision straight edge

ensures alignment precision silica balls

ensure parallelism
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BL3 Proton Detector
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BL3 Proton Detector
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BL3 Neutron Counters and Alpha-Gamma 2.0

neutron counter installed
on the proton counting
apparatus

neutron counter
calibration on the Alpha-
Gamma 2.0 instrument
(5A monochromatic beam)

@E University of
E< Kentucky

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAI
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BL3 Neutron Counters and Alpha-Gamma 2.0
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chopper

in beam

e single disc chopper

* max speed =70 Hz

e wavelength resolution <0.03A up to 20 A chopper
out of
beam

Tulane . .
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BL3 Schedule

e Cryogenic magnet contract signed: August
2020

e Full NSF funding ($8.2M) awarded: August
2022

® Magnet delivery expected summer 2025

@ System integration and offline
commissioning: 2025-2026

@ Ship BL3 to NIST Center for Neutron Research
and online commissioning: 2027

® Production data collection: 2027-2029
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THANK YOU'!
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