Studies of Tau and Dark Sector **Decays at Belle and Belle II**

- Indiana University / CEEM
- CIPANP25, 8-13 June, 2025

on behalf of the Belle and Belle II Collaborations

W. W. Jacobs - Studies of Tau and dark sector decays at Belle and Belle II

B-Factory: SuperKEKB at KEK Laboratory with Belle and Belle II, Tsukuba

Linac

6/10/25

P

W. W. Jacobs - Studies of Tau and dark sector decays at Belle and Belle II

KEK Collider and Belle / Belle II Experiments

<u>KEKB 1999-2010</u>: e^+ (3.5 GeV) e^- (8 GeV) collider

• collected luminosity $\approx 1 \ ab^{-1}$

SuperKEKB: e^+ (4 GeV) e^+ (7 GeV) collider w/ major upgrades

- recorded luminosity = 575 fb^{-1}
- Run 1 = 428 fb^{-1} (365 @ $\Upsilon(4S)$ + 62 off-resonance)
- World Record instantaneous luminosity = 5.1 $\times 10^{34} cm^{-2} s^{-1}$
- plan to collect many ab^{-1} of data!

Design: x 30 increase in instantaneous luminosity

- × 1.5 from upgraded ring (higher current).
- $\times 20 \beta^*$ from final focus magnets.

Nano beam scheme works! Squeeze vertical beam spot down to ~ 50 nm with super-conducting magnets

KEK Collider and Belle / Belle II Experiments

- > Belle II is a major upgrade of the Belle detector
 - better resolution, particle ID and rate capability (including backgrounds)
- Excellent capabilities for Tau and Dark Sector physics investigations
 - missing energy and neutral reconstruction:
 - well defined initial state and clean environment
 - precisely known acceptance/efficiencies with nearly hermetic detector
 - good particle identification (lepton ID, π/K separation)
- Improved vertex resolution; excellent tracking and reconstruction efficiency
- Special triggers dedicated to <u>low-multiplicity events</u> (including single photon trigger not available at Belle)
 - allows for signal selection not previously possible
- > In combination: can exploit **new analysis approaches**

•

TAU DECAYS

Tau mass
 Lepton Universality
 Lepton Flavor Violation
 Baryon Number Violation

Overview - Tau Physics at Belle and Belle II

\succ The τ is the heaviest lepton in the SM:

- Tau can decay into leptons and hadrons
- Decays can involve 1 or 3 charged final-state particles
- Due to its large mass: sensitive to new physics models
- > **B** Factories are also τ factories ! $\sigma(e^+e^- \rightarrow \tau^+\tau^-(B\bar{B})) = 0.92(1.05)nb$
 - Testbed for SM or rare process searches

Exclusive reconstruction \Rightarrow Lower efficiency, higher purity

- $\succ \tau$ pairs are produced **back-to-back** and boosted in the CM frame
 - Identification largely topological
 - Separate into two opposite hemispheres via the thrust axis T
 - Use either one charged track (1-prong) or three charged tracks (3-prong)
- One τ tags the event ... the signal is reconstructed on the other side

6/22

 Can also exploit untagged analyses to boost the signal efficiency at the cost of some purity

Tag side: ($\varepsilon = 2.3\%$, purity 90%)

 $(\tau \to e \nu \bar{\nu}, \mu \nu \bar{\nu}, \pi^{\pm} \nu, \pi^{\pm} \pi^{0} \nu)$

au Mass Measurement at Belle II

- > The Tau Lepton mass is a **fundamental physics parameter**
 - important input, e.g., for lepton-universality tests

 \succ Use the pseudomass analysis method with $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$

- the M_{min} distribution ends at m_{τ}
- smeared by resolution and initial and final state radiation

Test of Lepton Flavor Universality (LFU) in au Decays

Are the W gauge bosons couplings for the three generations of leptons the same as predicted in the SM?

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto R_{\mu} \times \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \stackrel{\text{SM}}{=} 1$$

 $\succ R_{\mu}$ measurement in a 1 X 1 prong topology with $\pi^+ + n\pi^0$ tag and 365 fb^{-1} at Belle II

the SM

Most precise test

from a single Tau

$$R_{\mu} = \frac{B(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{B(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})} \stackrel{\text{SM}}{=} 0.9726$$

$$\begin{aligned} R_{\mu} &= 0.9675 \pm 0.0007(stat) \pm 0.0036(sys) \\ &|g_{\mu}/g_{e}|_{\tau} = 0.9974 \pm 0.0019 \end{aligned}$$

- Event selection is performed with rectangular cuts and a neural network • main systematics are from PID (0.32%) and trigger (0.1%)
 - R_{μ} is extracted with a **template fit** of the *e* and μ **momentum distr's**

W. W. Jacobs – Studies of Tau and dark sector decays at Belle and Belle II

New LFV Results: Decay $\tau^- \rightarrow \ell^- K_S^0$

- Belle + Belle II search for $\tau^- \to \ell^- K^0_S(\ell = e, \mu)$
- Require 4 charged particles with 0 net charge in 3×1-prong topology
 - reconstruct K_S^0 from $\pi^+\pi^-$
 - on the tag side: $au o \ell ar{
 u}_\ell
 u_ au / \pi
 u_ au (\ell = e, \mu)$
- Cut-based preselection
- BDT classifier trained using
 - track kinematics
 - event shape
 - neutral variables
- Resulting efficiency: 10%
- **Extract signal yield from 2D** plane $(M_{\tau}, \Delta E = E_{\tau} - E_{beam})$
- No significant signal observed in 428 fb^{-1} + 980 fb^{-1} (Belle + Belle II)
- Combined 90% CL upper limit on branching ratios:

 $\mathcal{BR}(\tau \to K^0_S e) < 0.8 \times 10^{-8} \quad \mathcal{BR}(\tau \to K^0_S \mu) < 1.2 \times 10^{-8} \quad \textbf{\Rightarrow new world-leading upper limits}$

arXiv:2504.15745

Baryon (and Lepton) Number Violation: $\tau^- \to \Lambda \pi^-$ and $\tau^- \to \bar{\Lambda} \pi^-$

> BNV plays a key role in helping explain the observed asymmetry of matter

- Many of the BSM scenarios allow for BNV
- Baryon and Lepton number violated; some models* allow $|\Delta(B-L)|=2,0$

Recent analysis and new most stringent limit

- use a 1 x 3 topology
 - reconstruct **4 charged particles** (0 net charge)
- $\Lambda(\bar{\Lambda})$ reconstructed from $p(\bar{p})$ and π^-
- background suppression: loose preselection plus gradient BDT
- $\epsilon_{sig} \simeq 9.5(9.9)\%$ for $\tau^- \to \Lambda(\bar{\Lambda})\pi^-$
- **backgrounds** $1.0^{1.3}_{-1.1}(0.5^{0.6}_{-0.6})$ estimated by rescaling sideband data yields in signal region

No events observed in signal region with 364fb⁻¹ integrated luminosity
 Set 90% CL upper limit on the branching fraction

 $\mathcal{BR}(\tau^- \to \Lambda(\bar{\Lambda}\pi^-) < 4.7(4.3) \times 10^{-8}$

PRD 110, 112003 (2024)

 PRD 90,016011 (2014)
 Phys. Lett. 88B, 311 (1979) 10/22

Summary of Searches of LFV, LNV and BNV at Belle / Belle II

- $ightarrow au
 ightarrow 3\mu\,$ new LFV, with untagged reconstruction
 - most stringent result $1.9 \times 10^{-8} (\mathcal{L} = 424 f b^{-1})$
 - JHEP **2024**, 062 (2024)

- $\succ \ \tau \rightarrow e 2 \ell \,$ new LFV, with untagged reconstruction
 - extend previous study to 5 more modes
 - most stringent upper limit for all modes (prelim)

DARK SECTOR

Z' boson invisible decay
 μμ, ττ resonant searches for DM Scalar, ALP
 Inelastic DM search
 FCNC B decay and ALP search

Dark Matter and Light Dark Sectors Accessible with Belle / Belle II

Dark matter is one of the most compelling reasons for new physics!

Experimental signatures in Dark Sector searches

Different signatures/topologies depending on DM & mediator mass relation and lifetimes

Long lived (decay to SM suppressed)

- inelastic DM, scalars, h', ...
- decay-length < O(1)m: visible signature -> displaced vertex
- decay-length > O(1)m: invisible signature -> missing momentum

The $L_{\mu} - L_{\tau}$ Gauge Boson: Search for (Invisible) Decaying Z'

 $= \mu$

 $= \tau$

Vector boson Z' with a coupling g' only to the 2nd and 3rd lepton family as introduced by the $L_{\mu} - L_{\tau}$ model [1] ...

$$\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell \qquad \begin{array}{c} \theta = +1 \text{ if } I \\ \theta = -1 \text{ if } I \end{array}$$

- m_{z'} and g' in a two-parameter model
- \succ Could explain DM abundance and muon (g-2)_µ anomaly
- ➢ May also help explain anomalies seen in rare B decays, e.g., R_{D(*)}, etc.

Search for the process $e^+e^-
ightarrow \mu^+\mu^- Z'$ (invisible)

- $\blacktriangleright \mathcal{BR}(Z' \to \nu \bar{\nu}) \sim 33 100\%$
- $\succ \ \mathcal{BR}(Z' \to \chi \bar{\chi}) \sim 100\%$ if this decay is kinematically accessible
- \succ Study the system recoiling against the $\mu^+\mu^-$ pair
- Dominate backgrounds are from radiative QED processes

[1] Shuve et al., Phys. Rev. D 89 , 113004 (2014); Altmannshofer et al., JHEP 106 (2016)

BR has dependence on Z' mass

Search for an Invisibly Decaying Z'

 $\sigma(\mathbf{e}^+\mathbf{e}^- \to \mu^+\mu^-\mathbf{Z}', \mathbf{Z}' \to \mathbf{invisible}), \text{ using } 79.7 fb^{-1}$

- ➢ Fit performed in different mass windows with flat backgrounds → no significant signal excess found
- Set 90% CL exclusion limits on cross section and coupling (g')

1. If Z' only decays to SM particles (vanilla)

2. For BR(Z' \rightarrow invisible) =1

Invisible Z' as origin of (g-2) anomaly excluded for $0.8 < M_{Z'} < 5.0$ GeV/C²

> NB: ongoing analysis w/ x4.6 dataset! 16/22

 $M_{Z'}$ [GeV/ c^2]

6/10/25

W. W. Jacobs - Studies of Tau and dark sector decays at Belle and Belle II

Exclude Z' (as well as <u>muonphilic dark scalar</u> model) explanations for $(g-2)_{\mu}$ over a wide mass range 6/10/25

particle ALP

 $\rightarrow \tau \tau$

Inelastic Dark Matter with a Dark Higgs

Probing a non-minimal Dark Sector model*

- Model can reproduce relic DM density
- 4 new DS particles:
- 7 free parameters:
 - 3 masses
 - 2 mixings •

2 couplings

- two dark states: χ_1 , χ_2 •
- Exploring 3 final states:

• dark photon: A'

dark Higgs: h'

• $h'
ightarrow x^+ x^-$, with $x=\mu,\pi,K$

- DM χ_1 stable relic candidate
- χ_2 is generally long-lived
 - Focus on: $m(A') > m(\chi_1) + m(\chi_2)$
- Decay $A' \rightarrow \chi_1 \chi_2$ favored

18/22

W. W. Jacobs – Studies of Tau and dark sector decays at Belle and Belle II

trigger

Looking for simultaneous

displaced vertex

missing energy

 \rightarrow signature-based analysis

challenging for tracking and

4 tracks in final state:

2 forming a pointing

• other 2 forming a non-

production of A' and h'

Inelastic Dark Matter with a Dark Higgs

- Search performed analyzing 365 fb⁻¹ of Belle II data
- > Challenging due to displaced vertices and the trigger
 - > Signal selection:
 - use pointing angles and vertex distance from the interaction point
 - very low SM background
 - cut and count strategy in $M_{h'}(x^+x^-)$ distributions
 - backgrounds estimated from sidebands (data)
 - No significant excess found in the individual final states or the combination:
 - for the $\pi^+\pi^-$ channel, of the 9 events observed, 8 are consistent with expected background

6/10/25

W. W. Jacobs – Studies of Tau and dark sector decays at Belle and Belle II

Inelastic Dark Matter with a Dark Higgs

arXiv:2505.09705

- Model independent limits on the process cross section
- $\succ 95\% \text{ CL upper limits on } \sigma(e^+e^- \to \chi_1\chi_2h') \times \mathcal{BR}(\chi_2 \to \chi_1e^+e^-)[\times \mathcal{BR}(h' \to x^+x^-)]$
- Strong limits on θ and $\epsilon \times \alpha_D$ (h' mixing, A' mixing/coupling), w/ dependency on 5 other parameters

World leading limits, but dependent on the choice of the remaining parameters → Provides interpretation for an additional ~ 30 model parameter configurations

Search for ALPs in FCNC B decays: $B \to K^{(*)}a'(\to \gamma\gamma)$

New Physics searches in Flavor Changing Neutral Current B decays

FCNC heavily suppressed in the Standard Model; NP can appear at same order

Search for Axion-Like Particle emission by W^{\pm} in $B \to K(^{*})a$ decays

- BR($a
 ightarrow \gamma \gamma$) $\simeq 100\%$ for $M_a \ll M_{W^\pm}$
- Probe range 0.16 4.50 GeV/c²; including 4 kaon modes $K_S^0, K^{\pm}, K^{*0}, K^{*\pm}$; full 711 fb^{-1} Belle dataset

Signal Reconstruction

Reconstruct B meson from ALP candidate (photon pair) and a Kaon candidate (charged or neutral)

Background suppression

 $\succ~$ Energy Main background from continuum $e^+e^- \rightarrow q\bar{q}$

B

> Use **multiple BDTs** exploiting event shape, kinematics and energy cluster info to suppress π^0 backgrounds

Summary for Belle/Belle II Tau and Dark Sector

- Belle and Belle II are unique facilities and provide an excellent environment for many exciting dark sector and tau studies
 - Precision measurements of tau properties
 - □ World-leading results on LFU and LFV searches with tau decay
 - New limits from Z' invisible and visible decays; resonance searches put limits on dark scalar models and ALP decay to tau leptons
 - First search for Dark Higgs bosons produced in association with inelastic dark matter
 - Many more tau decay and dark matter searches ongoing and projected

Expect new significant results with the data sets of the next few years!

Thank you!

BACKUP SLIDES

Search for Z', S $\rightarrow \mu\mu$ at Belle II

Phys. Rev. D 109, 112015 (2024)

6/10/25

W. W. Jacobs - Studies of Tau and dark sector decays at Belle and Belle II

 \succ First direct constraints for $ALP \rightarrow TT$

note: coupling normalized to global symmetry breaking scale Λ

Analysis issues: Search for an Invisibly Decaying Z' Boson

- Analysis of 2019-2020 Belle II data (79.7 fb⁻¹)
- Signal: $\mu^+\mu^-$ + missing energy

 $\mathbf{M^2_{recoil}}(\mu\mu) = \mathbf{s} + \mathbf{M}(\mu\mu)^2 - \sqrt{\mathbf{s}}(\mathbf{E}^{\mathbf{CM}}_{\mu^+} + \mathbf{E}^{\mathbf{CM}}_{\mu^-})$

Selection:

- two track w/ muons, p_T > 0.4 GeV/c
- trigger veto to suppress Bhabha scattering
- opening angles between muons in c.m.
 frame < 179° to suppress μ⁺μ⁻(gamma)

Punzi-net artificial neural network [1], optimizes FOM for all Z' mass hypotheses simultaneously.

outside

accept-

ance

W. W. Jacobs - Studies of Tau and dark sector decays at Belle and Belle II