MUonE: a direct study of the hadronic vacuum polarization current status and prospects

Dinko Počanić (for the MUonE collaboration)

University of Virginia

10 June 2025

 15^{th} Conf. on Intersections of Particle and Nuclear Physics 9-13 June 2025 University of Wisconsin, Madison, WI

Outline of the talk

- 1. Why was MUonE proposed?
 - the muon magnetic anomaly $a_{\mu} = \frac{1}{2}(g_{\mu}-2)$, and
 - the hadronic vacuum polarization (HVP),
 - status of a_{μ} in 2025.
- 2. How will MUonE be carried out at CERN?
 - principles of measurement,
 - apparatus,
 - status and plans.
- 3. The experimental path forward for HVP.

Lepton magnetic dipole moments and the associated anomaly

Dirac's equation (1928) for a point particle g-factor, defined by $\vec{\mu} = g \frac{e}{2m} \vec{S}$, gives $g \equiv 2$, precisely. Quantum fluctuations give rise to the anomalous magnetic moments:

Lepton magnetic dipole moments and the associated anomaly

Dirac's equation (1928) for a point particle g-factor, defined by $\vec{\mu} = g \frac{e}{2m} \vec{S}$, gives $g \equiv 2$, precisely. Quantum fluctuations give rise to the anomalous magnetic moments:

The electron a_{e} is extremely well measured:

```
(Is it now the best measure of \alpha?)
```

 $a_{\rm e} = \begin{cases} 0.001\,159\,652\,181\,61\,(23) & [SM, \,(\alpha/\pi)^5 \text{ order}] \\ 0.001\,159\,652\,180\,46\,(18) & [\text{experiment}, \, 0.16\,\text{ppb}] \end{cases}$ Aoyama, Kinoshita & Nio, Atoms 7 (2019) 1. Mohr et al., CODATA 2022, (20-May-2024).

Until α settles, a_e cannot test the SM critically. Further, low m_e limits coupling to high-E BSM physics.

D. Počanić (UVA)

MUonE & HVP:

Muon magnetic anomaly, $a_{\mu} = \frac{1}{2}(g_{\mu} - 2)$

Analogous to a_e , but much more sensitive to loops with massive particles:

sensitivity $\propto \left(m_{\mu}/m_{
m e}
ight)^2 pprox$ 43,000

Muon magnetic anomaly, $a_{\mu} = \frac{1}{2}(g_{\mu} - 2)$ Analogous to a_{e} , but much more sensitive to loops with massive particles: sensitivity $\propto (m_{\mu}/m_{e})^{2} \approx 43,000$

Muon magnetic anomaly, $a_{\mu} = \frac{1}{2}(g_{\mu} - 2)$ Analogous to a_{e} , but much more sensitive sensitivity $\propto (m_{\mu}/m_{\rm e})^2 \approx 43,000$ to loops with massive particles: El-weak (hadronic) H + Leading order processes contributing to a_{μ} : **2020 status** of SM calculations of a_{μ} : value ($\times 10^{-11}$) a_{μ} term uncert. QED 0.104 116.584.718.931 $rac{\Delta a_{\mu}^{\rm SM}}{a^{\rm SM}} = 369 imes 10^{-9}$ (369 ppb) El-weak 153.61.0HVP 6845 40 HLbL 92 18 T. Aoyama, et al., Phys. Rep. 887 (2020) 1, and ref's. Total SM 116.591.810 43 therein, [Muon g-2 Theory Initiative White Paper] $\Rightarrow a_{\mu}$ is a superb probe of the vacuum, i.e., of new physics if it exists.

HVP ... hadronic vacuum polarization: D. Počanić (UVA)

MUonE & HVP:

The magnetic anomaly

10 Jun '25 / CIPANP25

HLbL ... hadronic light by light scattering.

 $\Rightarrow a_{\mu}$ is a superb probe of the vacuum, i.e., of new physics if it exists.

MUonE & HVP:

The magnetic anomaly

HLbL ... hadronic light by light scattering. 10 Jun '25 / CIPANP25

Muon g-2 measurements up to 2001

Exp. value dominated by results of BNL E821:

 $a_{\mu}^{\mathrm{exp}}=\!\!116\,592\,089\,(54)_{\mathrm{stat}}\,(33)_{\mathrm{syst}} imes10^{-11}\,,\mathrm{or}$

 $a_{\mu}^{\mathsf{exp}}=\!116\,592\,089\,(63)_{\mathsf{tot}} imes 10^{-11},\,\,\mathsf{i.e.,\,a}$

0.54 ppm result : statistical unc. dominates .

[SM precision comparable, but \sim 3.5 σ away!]

FNAL E989 set out to improve this result:

- Use the BNL ring in a more intense beam at Fermilab: 21 × statistics of BNL E821, and
- improve key systematics
- ► Aim for 4× lower uncertainty, 0.14 ppm

D. Počanić (UVA)

Measuring $g_{\mu} - 2$

Results after E989 Runs 2/3 analysis (Aug. 2023)

New combined world average:

Aguillard et al., arXiv 2308.06230 / PRL 131 (2023) 16; Run 2/3 full analysis: arXiv 2402.15410 / PRD 110 (2024) 032009

 $a_{\mu}(\text{Exp}) = 116592059(22) \times 10^{-11}$ (0.19 ppm).

Results after E989 Runs 4/5/6 analysis (3 June 2025)

New combined world average: Aguillard et al., arXiv 2506.03069, submitted to PRL.

 $a_{\mu}(\text{Exp}) = 1165920715(145) \times 10^{-12}$ (124 ppb).

Calculating HVP-LO in the standard model [from exp. cross sections]

In SM, HVP is determined based on measurements of $\sigma(e^+e^- \rightarrow \text{hadrons}) \Rightarrow$... timelike processes.

Calculating HVP-LO in the standard model [from exp. cross sections]

In SM, HVP is determined based on measurements of $\sigma(e^+e^- \rightarrow \text{hadrons}) \Rightarrow$... timelike processes.

- use dispersion relations: optical theorem and analyticity,
- ► integral over QCD kernel K(s) heavily weights low √s:

$$a_{\mu}^{\text{HVP-LO}} = rac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, K(s) \sigma_{ ext{had}}(s);$$

 $K(s) = \int_0^1 \mathrm{d}x rac{x^2(1-x)}{x^2 + (1-x)(s/m_{\mu}^2)}.$

It is mostly $e^+e^- \to \pi^+\pi^-$ / $\pi^+\pi^-\pi^0$ / $\pi^0\gamma$; diverse measurements, in many different labs.

MUonE & HVP: SM pred

R(s)

MUonE experiment at CERN:

a direct measurement of HVP-LO through muonic Bhabha scattering

https://web.infn.it/MUonE/

MUonE & HVP: MUonE at CERN

MUonE experiment: spacelike determination of a_{μ}^{HVP}

Task: measure the change (running) of the eff. FS const. $\alpha(0) \simeq 1/137 \rightarrow \alpha(t)$ in a single scattering process $\mu^+ + e^- \rightarrow \mu^+ + e^-$:

$$\alpha(t) = \frac{\alpha(0)}{1 - \Delta \alpha(t)}, \quad \text{with} \quad \Delta \alpha = \Delta \alpha_{\text{lepton}} + \Delta \alpha_{\text{hadron}} + \Delta \alpha_{\text{top}} + \Delta \alpha_{\text{weak}}.$$

The sole integral is over a single well-behaved, smooth function.

D. Počanić (UVA)

MUonE & HVP: MU

MUonE method

Practical aspects of the measurement

Further practical aspects of the MUonE measurement

- High-energy muon beam on atomic electrons in target
- $\circ~{\rm d}\sigma\propto \alpha^2$ at leading order \rightarrow a sensitive observable
- $\Delta \alpha_{had}$ extracted from shape $R_{had}(t)$ from $d\sigma(t)$
- Elastic events selected using correlated track angles:

$$R_{\rm had}(t) = \frac{{\rm d}\sigma(\Delta\alpha_{\rm had})}{{\rm d}\sigma(\Delta\alpha_{\rm had}=0)} \simeq 1 + 2\Delta\alpha_{\rm had}$$
from Monte Carlo sim

Elastic kinematics:

• t is entirely determined by E_e : $t = (p_e^i - p_e^f)^2 = 2m_e(m_e - E_e)$

$$E_e$$
 from track angle and E_{μ}^{inc} :
 $E_e = m_e rac{1+r^2\cos^2 heta_e}{1-r^2\cos^2 heta_e}$
 $r = rac{\sqrt{(E_{\mu}^{\text{inc}})^2 - m_e^2}}{E_{\mu}^{\text{inc}} + m_e}$

- o $\, {\it E}_{\mu}^{
 m inc} \simeq 160 \, {
 m GeV}$ muon beam
- x < 0.936 ~ 88% of integral; rest extrapolated.

10 Jun '25 / CIPANP25

Particle ID from scat. angles alone:

simply sort left- vs. right-angle scattering;

 $\mu\text{-}e$ track ambiguity region grows as $\delta\theta$ increases;

radiative processes $\mu e \rightarrow \mu e \gamma$ smear the plots \Rightarrow need good $\delta \theta$ to reject radiative events.

MC simulation of elastic scattering

MUonE analysis approach and challenges

Recall that: $R_{\rm had}^{\rm LO}\simeq 1+2\Deltalpha_{\rm had}$.

Critical considerations and requirements:

- θ_{μ} is robust primary observable
- detector alignment & its stability
- tracking reconstruction efficiency and accuracy
- detailed understanding of detector response
- optimized cuts to eliminate bgds
- particle ID needed for systematics
- accurate simulation of all processes at goal measurement precision

 reliable event generators for higher order and radiative terms; theory support essential!: Mesmer (Pavia), McMule (PSI).

D. Počanić (UVA)

MUonE & HVP: M

MUonE method

Theoretical underpinnings for the analysis

MUonE needs: Muon-electron scattering at NLO and (approximate) NNLO and results NNLO virtual and real leptonic corrections to μ -e scattering and results

- → Carloni Calame et al., PLB 746 (2015), 325
- ---- Mastrolia et al., JHEP 11 (2017) 198
- → Di Vita et al., JHEP 09 (2018) 016
- → Alacevich et al., JHEP 02 (2019) 155
- ---- Fael and Passera, PRL 122 (2019) 19, 192001
- → Fael, JHEP 02 (2019) 027
- ↔ Carloni Calame et al., JHEP 11 (2020) 028
- → Banerjee et al., SciPost Phys. 9 (2020), 027
- --- Banerjee et al., EPJC 80 (2020) 6, 591
- ---- Budassi et al., JHEP 11 (2021) 098
- → Balzani et al., PLB 834 (2022) 137462
- --- Bonciani et al., PRL 128 (2022) 2, 022002
- → Budassi et al., PLB 829 (2022) 137138
- → Broggio et al., JHEP 01 (2023) 112

- → A lively theory community is active to provide state-of-the-art calculations to match the required accuracy for meaningful data analysis
- → Independent numerical codes (Monte Carlo generators and/or integrators) are developed and cross-checked to validate high-precision calculations. Chiefly
 - ✓ Mesmer in Pavia

github.com/cm-cc/mesmer

✓ McMule at PSI/IPPP

gitlab.com/mule-tools/mcmule

[summary from Carloni Calame, May 2023]

D. Počanić (UVA)

MUonE & HVP:

MUonE method

The physical apparatus

2S tracker modules:

ECAL: PbWO₄ $\sim 3 \times 3$ cr

 $\sim 3 \times 3 \text{cm}^2$ $22X_0 \text{ long;}$ slightly tapered; on loan-CMS; $10 \times 10 \text{ mm}^2$ APDs Laser gain monitoring.

D. Počanić (UVA)

MUonE & HVP:

The physical apparatus

10 Jun '25 / CIPANP25

MUonE test beam time results 2023 (M2 beamline, SPS/CERN, 160 GeV muons)

Two tracking stations and ECAL

Abundant proof of principle!

D. Počanić (UVA)

MUonE & HVP: T

Test run results

10 Jun '25 / CIPANP25

Select measures of performance (preliminary)

MUonE & HVP:

: Test run results

Angular distributions: scattered electrons

A comparison of 2023 data and MC simulation: A look at the electron track angular resolution

 $5 \,\mathrm{mrad} < heta_e < 20 \,\mathrm{mrad}$

Data/MC ratio as a function of θ_e mostly contained within the gray limits of $\pm 3\%$.

Note: to ensure proper normalization of the leptonic (QED) running of $\alpha(t)$, the MC description of measured angular distributions must be accurate to < 0.5 %.

Tracking efficiency as f(scattering angle)

 $5 \,\mathrm{mrad} < heta_e < 20 \,\mathrm{mrad}$

MC normalized to Data Luminosity $\times \epsilon_{hw}$

Det. efficiency: $\epsilon_{\text{hw}} = 0.850 \pm 0.035$ (2 track); from module efficiency $\epsilon_{\text{mod}} \simeq 0.980 \pm 0.005$.

MUonE & HVP:

Test run results

Tracker-ECAL position resolution

2023 data: x- and y-coordinate differences between the projected Tracker impact points on the ECAL front face, and the reconstructed el-mag shower centers, for synchronised Tracker-ECAL events. Gaussian peaks ($\sigma_{x,y} \simeq 0.8 \text{ mm}$), are consistent with Monte Carlo simulations of the setup. Work in progress.

D. Počanić (UVA)

MUonE & HVP: Tes

: Test run results

MUonE goals, status and plans

[LS3 = long accel. shutdown at CERN]

- Long-term goal (post LS3): 40 stations × 3 yrs. of data collection, yielding
 - $1.5 \times 10^7 \,\mathrm{nb}^{-1}$, 10 ppm stat. unc. on $\sigma(t)$ measurement at peak of integrand function,
 - $\sim 0.3\%$ on $a_{\mu}^{\text{HVP-LO}}$... competitive with other methods.
- Proof of MUonE measurement principle has been established.
- Full technical proposal approved by CERN SPSC in 2024 for a 2025 interim run.
- \blacktriangleright 2025 run: 3 tracking st., ECAL, BMS, MF imes 4 wks of beam ightarrow \sim 20% on $a_{\mu}^{
 m HVP-LO}$,
 - a first physics result before mid-2026 (start of LS3, 3-yr CERN accelerator shutdown):

Phase 1 Run: on the floor in M2/SPS, summer 2025

Fully deployed for the first time:

- 3 tracking stations,
- ► ECAL,
- a Muon filter prototype,
- a Beam Momentum System (BMS) prototype,
- fully configured Serenity-based DAQ,

MUonE & HVP:

Test run results

Current status, prospects, experimental path forward

- Fermilab E989 Muon g−2 final result has exceeded its stated goal and improved a_µ precision by ~ 4.4× compared to BNL E821.
- ▶ While there is no tension w.r.t. LQCD calculations, profound questions surround the dispersion-relation SM evaluation $a_{\mu}^{\text{HVP-LO}}$, and the underlying data set on $e^+e^- \rightarrow \text{hadrons}$.
- MUonE at CERN offers a unique, completely independent way to determine $a_{\mu}^{\text{HVP-LO}}$.
- E34 at J-PARC will measure a_{μ} with different systematics from E989, but with far lower event statistics.

With the target, high experimental precision of a_{μ} achieved, the focus remains on getting a deeper understanding of the HVP!

The current MUonE collaboration

Experimental groups:

INFN Pisa **INFN** Bologna **INFN** Padova INFN Università di Perugia INFN Università di Trieste University of Rijeka IFJ PAN Kraków Imperial College London Liverpool University J. Gutenberg Universität Mainz University of Virginia **Regis University** Northwestern University Cornell University

Theoretical groups:

Università di Padova Università di Pavia Paul Scherrer Institute Universität Zürich ETH Zürich

New collaborators are warmly encouraged!

