

$\mu \rightarrow e$ conversion in nuclei: Effective theory and new experimental signals Evan Rule | CIPANP 2025 | June 11, 2025

Standard model:

Muon decay:	$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$
Beta decay:	$n \rightarrow p + e^- + \bar{\nu}_e$
Pion decay:	$\pi^+ \rightarrow \mu^+ + \nu_\mu$

Standard model: Each flavor conserved

Muon decay: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Beta decay: $n \rightarrow p + e^- + \bar{\nu}_e$

 π^+ Pion decay:

$$\rightarrow \mu^+ + \nu_{\mu}$$

Standard model: Each flavor conserved

Muon decay: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Beta decay: $n \rightarrow p + e^- + \bar{\nu}_e$

Pion decay: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Standard model: Each flavor conserved

Muon decay: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Beta decay:

$$n \rightarrow p + e^- + \bar{\nu}_c$$

Pion decay:

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

Standard model + neutrino oscillations

Standard model: Each flavor conserved

Muon decay: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Beta decay:

$$n \rightarrow p + e^- + \bar{\nu}$$

Pion decay:

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

Standard model + neutrino oscillations

Charged lepton flavor violation (CLFV) \rightarrow BSM Physics

Standard model: Each flavor conserved

Muon decay: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

 $\pi^+ \rightarrow$

Beta decay:

$$n \rightarrow p + e^- + \bar{\nu}_c$$

Pion decay:

$$\rightarrow \mu^+ + \nu_\mu$$

Charged lepton flavor violation (CLFV) \rightarrow BSM Physics

CLFV limits constrain BSM theories

Collider Constraints		Stopped Muon Constraints					
Process	BR Limit	CL	Experiment	Process	BR Limit	CL	Experiment
Z ightarrow e au	5.0×10^{-6}	95%	ATLAS	$\mu^+ ightarrow e^+ \gamma$	3.1×10^{-13}	90%	MEG + MEG II
$Z \rightarrow \mu \tau$	6.5×10^{-6}	95%	ATLAS	$\mu^+ \to e^+ e^- e^+$	1.0×10^{-12}	90%	SINDRUM
$Z \rightarrow e \mu$	7.5×10^{-7}	95%	ATLAS	$\mu^- + \mathrm{Cu} \rightarrow e^- + \mathrm{Cu}$	1.6×10^{-8}	90%	SINDRUM II
h ightarrow e au	2.2×10^{-3}	95%	CMS	$\mu^- + {}^{32}\mathrm{S} ightarrow e^- + {}^{32}\mathrm{S}$	7×10^{-11}	90%	SIN
$h ightarrow \mu \tau$	1.5×10^{-3}	95%	CMS	$\mu^- + \mathrm{Pb} \rightarrow e^- + \mathrm{Pb}$	4.6×10^{-11}	90%	SINDRUM II
$h ightarrow e \mu$	6.1×10^{-5}	95%	ATLAS	$\mu^- + \mathrm{Ti} ightarrow e^- + \mathrm{Ti}$	6.1×10^{-13}	90%	SINDRUM II
$B^+ \to K^+ \mu^- \tau^+$	2.8×10^{-5}	90%	BaBar	$\mu^- + \mathrm{Au} \rightarrow e^- + \mathrm{Au}$	7.0×10^{-13}	90%	SINDRUM II
$B^+ \to K^+ e^- \mu^+$	6.4×10^{-9}	90%	LHCb	$\mu^+ \rightarrow e^+ \gamma$	6×10^{-14}	90%	MEG II
$D^+ \rightarrow K^+ e^+ \mu^-$	7.5×10^{-8}	90%	LHCb	$\mu^+ \rightarrow e^+ e^- e^+$	4×10^{-16}	90%	Mu3e
$\tau^- \rightarrow e^- \gamma$	3.3×10^{-8}	90%	BaBar	$\mu^- + Al \rightarrow e^- + Al$	$8 imes 10^{-17}$	90%	Mu2e
$\tau^- ightarrow \mu^- \gamma$	4.2×10^{-8}	90%	Belle	$\mu^- + \mathrm{Al} \rightarrow e^- + \mathrm{Al}$	$7 imes 10^{-17}$	90%	COMET
$\tau^- \rightarrow e^- e^+ e^-$	2.7×10^{-8}	90%	Belle	Next-Generation Experiments			

 μ_{\bullet}^{-}

Mu2e Experiment

A Tower of Effective Theories

Many possible CLFV mechanisms can mediate $\mu \rightarrow e$ conversion

Requires multiple experimental programs with different target nuclei

Can we learn more from a single nuclear target?

Large energy transfer $\Delta E \approx m_{\mu} \approx 100 \text{ MeV}$

Large energy transfer $\Delta E \approx m_{\mu} \approx 100 \text{ MeV}$

Relative to nuclear excitation energies $\Delta E_{\rm nuc} \sim 1 \; {\rm MeV} \label{eq:electropy}$

Large energy transfer $\Delta E \approx m_{\mu} \approx 100 \text{ MeV}$

Relative to nuclear excitation energies $\Delta E_{nuc} \sim 1 \; {\rm MeV} \label{eq:deltaEnuclear}$

Signal electron shifted

 $E_e \approx m_\mu - \Delta E_{
m nuc}$

Expected Mu2e signal

Monte Carlo simulation of Mu2e experimental pipeline Including all backgrounds and cuts

1. Protons on production target

2. Pions decay to muons

- 3. Muons captured on target
- 4. Electrons detected by calorimeter

Coherent conversion

Elastic process enhanced

Ground state dominates

 $\mu \rightarrow e$ conversion in nuclei Ken McElvain, Tony Menzo, Michael Ramsey-Musolf, Jure Zupan

Mu2e and COMET will probe CLFV at energies \lesssim 10,000 TeV

Complete effective theory: Experiment to UV

Inelastic conversion: new signal + new information

μ → *e* conversion in nuclei Ken McElvain, Tony Menzo, Michael Ramsey-Musolf, Jure Zupan

Mu2e and COMET will probe CLFV at energies $\lesssim 10,\!000$ TeV

Complete effective theory: Experiment to UV

Inelastic conversion: new signal + new information

Backup Slides

Nuclear operator: isoscalar charge monopole $M_0(q)$

- Rate enhanced by A^2
- Nuclear matrix elements constrained by electron scattering, πN scattering, pionic atoms,...

Process	BR Limit	CL	Experiment
$h ightarrow e \mu$	6.1×10^{-5}	95%	ATLAS
$\mu^- + \mathrm{Al} \rightarrow e^- + \mathrm{Al}$	8×10^{-17}	90%	Mu2e

 $\mu \rightarrow e$ provides better constraint than $h \rightarrow e\mu, \mu \rightarrow e\gamma, \mu \rightarrow 3e$

Expected Mu2e signal

Monte Carlo simulation of Mu2e experimental pipeline Including all backgrounds and cuts

- 1. Protons on production target
- 2. Pions decay to muons
- 3. Muons captured on target
- 4. Electrons detected by calorimeter

- 1. Protons on production target
- 2. Pions decay to muons
- 3. Muons captured on target
- 4. Electrons detected by calorimeter

Individual spectral shapes

Fixed by e^- interactions before hitting detector

Spin-dependent $\mu \rightarrow e$ Conversion

Flavor-violating ALPs

Fuyuto & Mereghetti, arXiv:2307:13076

$$\mathcal{L}^{a} \supset -2i\frac{a}{f_{a}}m_{\mu}a_{\mu\mu}\bar{\mu}\gamma_{5}\mu - i\frac{a}{f_{a}}m_{\mu}\bar{e}(v_{e\mu} + a_{e\mu}\gamma_{5})\mu$$

Spin-dependent $\mu \rightarrow e$ Conversion

Flavor-violating ALPs

Fuyuto & Mereghetti, arXiv:2307:13076

$$\mathcal{L}^{a} \supset -2i\frac{a}{f_{a}}m_{\mu}a_{\mu\mu}\bar{\mu}\gamma_{5}\mu - i\frac{a}{f_{a}}m_{\mu}\bar{e}(v_{e\mu} + a_{e\mu}\gamma_{5})\mu$$

Spin-dependent $\mu \rightarrow e$ Conversion

