A new method to calibrate the Mu2e momentum scale

CIPANP 2025, Madison, WI

P.Murat (Fermilab), on behalf of the Mu2e collaboration

Jun 09 2025

Final step of the search for $\mu^- ightarrow e^-$ conversion on nuclei

- Mu2e will search for $\mu^- \to e$ conversion on Al in two channels : $\mu^- \to e^-$ and $\mu^- \to e^+$
- The last step look for a narrow peak at the kinematic endpoint of e⁻(e⁺) spectrum
- expected momentum resolution \sim 1 MeV/c FWHM
- the physics requirement: $\sigma_P/P < 100$ keV/c , or $\sigma_P/P < 10^{-3}$ at 100 MeV/c

Mu2e detector - a bird's view

focus of this talk - what is [will be!) happening inside the the Mu2e detector solenoid (DS)

Pre-requisite to the scale calibration : calibration of the energy losses

- $P_{rec} = P_{true} \Delta P_{eloss} + K_{scale} \cdot P_{true} + C_{misalignment} \cdot P^2$
- for Mu2e, the energy losses are the dominant source of corrections, \sim 1 MeV, or 10⁻²
- Iplan to calibrate the energy losses using tracks U-turning in the DS magnetic bottle:
 - $\blacktriangleright P_1 P_2 = 2 \times \Delta P_{eloss}$
- tracker alignment is well outside of the scope of this talk, assume done :)

Momentum scale: the magic of 10⁻³ level corrections

Josh Bendavid, CERN MW seminar, Sep 17 2024

• HEP trackers seem to always require data-driven scale corrections at a level of $\sim 10^{-3}$

MEG-II scale correction : 0.9991 ± 0.0001 (https://arxiv.org/pdf/2310.12865)

Exploiting Michel decays - how to switch to μ^+ beam ?

- the edge of the $\mu^+ \rightarrow e^+ \nu \nu$ spectrum, P = 52.8 MeV/c, is an excellent calibration tool
- Mu2e runs with a negative muon beam
- to switch the beam polarity, rotate collimators in the middle of the transport solenoid by 180 deg

Michel decays

Fig. 8. Endpoint region of the positron momentum spectrum from the decay $\mu^+ \rightarrow e^+ \nu \overline{\nu}$

- the Mu2e detector is optimized for 100 MeV/c particles
- at nominal magnetic field B = 1T, reconstruct tracks down to P \sim 80 MeV/c
- to get e^+ from Michel decays within the acceptance, need to reduce the B-field by \sim x2
- ... and extrapolate the scale correction back to the nominal B-field

Another calibration line: $\pi^+ \rightarrow e^+ \nu$ decays of stopped π^+ 's

- $\pi^+ \rightarrow e^+ \nu$ decays at rest produce monochromatic E = 69.8 MeV positrons
- the strategy: switch to positive beam, stop π^+ 's, reconstruct positrons from their decays
- still need to reduce the B-field, now down to $\sim 70\%$
- pions arrive to the detector solenoid in 200-300 ns, and only a minor fraction survives
- overwhelming background from $\mu^+ \rightarrow e^+ \nu \nu$ decays in flight which need to be suppressed

- to suppress muon decays in flight, need a removable absorber inserted into the beam
- space in the detector is very limited
 - μ^- captures in the stopping target generate $\sim 10^1$ neutrons/ns and 10^0 protons/ns
 - they are absorbed by the two polyethylene absorbers, the inner and the outer ones
- however, a narrow gap between the transport and detector solenoids is available

Suppressing $\mu^+ \rightarrow e^+ \nu \nu$ decays in flight: pion degrader

- pion degrader: an arm with an attached absorber disk
- the arm is moved in and out of the beam by a 50mNm piezoelectric stepmotor
- when in the beam, suppresses the muon decays in flight

$\pi^+ ightarrow {\it e}^+ u$ decays of stopped pions

- optimal degrader thickness corresponds to \sim 4mm of Ti
- expect to reconstruct a positron peak from $\pi^+
 ightarrow e^+
 u$ with S/B \sim 3-4
- calibration run: about 1000 event per day, the same topology as the signal
- background subtraction results in additional, 20-30 keV/c level, systematics

Caveats of the momentum scale extrapolation

- with two measurements, can extrapolate the scale correction to B = 1T
- the error propagation math: contribution of $\pi^+ \rightarrow e^+ \nu$ gets amplified by a factor of 2.5
- that brings the total uncertainty close to 100 keV/c

Radiative pion capture on hydrogen

- Is there a process which produces monochromatic particles with E ~ 100 MeV ?
 - radiative capture of stopped negative pions in hydrogen !
- $\pi^- + p \rightarrow n + \gamma$ (~ 40%) and $\pi^- + p \rightarrow n + \pi^0(\gamma\gamma)$ (~60%)
- the first channel yields monochromatic photons with E = 129.4 MeV
- how to proceed:
 - ▶ use $\pi^- + p \rightarrow n + \gamma$ channel, produce 129.4 MeV photons
 - ▶ convert photons in the detector : $\gamma \rightarrow e^+e^-$,
 - ▶ reconstruct tracks of e⁺ and e⁻, use their total energy for the scale calibration

Can't use hydrogen target, but how about polyethylene ?

- pion capture in CH₂ target: a well-identified peak from π⁻ + p → n + γ (e⁺e⁻)
- probability for a pion stopped in CH₂ to be captured by a proton is 1.3%
- can be used for momentum scale calibration

Modifications to the pion degrader

producing 129.4 MeV photons: replace the Ti degrader disk with the CH₂ disk

- converting the photons: add a photon converter at R = 27 cm
 - converter: 100 um thick gold foil supported by a carbon foam ring (not shown)
 - the support ring adds \sim 0.03% X_0 , about 10% of that of the gold foil

How to detect the conversion pairs ?

End of the transport solenoid

- the tracker is 4m downstream of the production point
- the e⁺ and e⁻ from a conversion travel in vacuum missing most of the material
- produced at R = 27 cm, particles with P > 40 MeV/c enter the tracker fiducial
- can be done at B = 1 T !

How does a $\gamma \rightarrow e^+e^-$ event look like in the Mu2e tracker

- red track:e⁻, blue track:e⁺, small red circles: clusters in the calorimeter
- the circles are tangent to each other (!)
- easily recognizable in phi-Z view

Reconstruction of the photon momentum

• a scalar sum of $P(e^{-})+P(e^{+})$ makes an excellent proxy to P_{γ}

- ullet for a 100 um thick gold converter, FWHM \sim 1 MeV, the MP energy loss of the same order
- expected yield: ~ 1000 events/day,
- the fit uncertainty on the peak position better than 10 keV

Combining the three measurements together

perform three measurements

- over-constrain determination of the momentum scale
- get reliable estimate of the systematic uncertainties

- Mu2e plans to exploit three physics processes the calibrate the momentum scale in situ: $\mu^+ \rightarrow e^+ \nu \nu$, $\pi^+ \rightarrow e^+ \nu$, and $\pi^- p \rightarrow n\gamma$ (RPC on hydrogen)
- the measurements need to be performed at different B-field values, one of them at full field, B= 1 T
- with all three carried out, expect the systematic uncertainty on the reconstructed momentum to be well within the experimental requirements (< 100keV/c) at 100 MeV/c</p>

イロト イポト イヨト イヨト

Radiative pion capture, hydrogen compounds

FIG. 10. Relative probability for the capture of pions on protons in hydrogenous compounds. Plotted is the

- however, can't put a hydrogen target inside the detector
- a hydrogen-containing compound material instead ? CH₂ ?
- In hydrogeous compounds pions form meso-molecules, consisting of 2 atoms
- the probability for a stopped pion to be captured by a H atom in CH₂ is about 1.3% (ref ..)