Latest LZ WIMP results

CIPANP - 10 June 2025

Chami Amarasinghe, UCSB On behalf of the LZ collaboration

The LZ detectors

Bottom Side Skin PMTs

Instrumented OD

Bottom Dome Skin PMTs

LZ veto system

Backgrounds scatter multiple times – WIMPs only once

Veto system designed to reject and characterize gamma and neutron backgrounds

Signal production in liquid xenon

Energy deposits produce ions and excitons

Excitons + recombined ions \rightarrow **S1** (prompt scintillation)

Escape electrons drifted and extracted \rightarrow S2

Changes since WIMP Search 2022 result

Phys. Rev. Lett. 131 (2023) 4, 041002

First result WS2022 set leading limits with 60d livetime

Detector campaigns since WS2022

- Lowered drift and extraction fields
 - To reduce spurious emissions
- Established xenon flow states with circulation changes

	C/G/A voltage [kV]	Drift field [V/cm]	g1 [phd/photon]	g2 [phd/electron]	Analysis livetime [d]
WS2022	-32/-4/+4	193	0.114	47.1	60
WS2024	-18/-4/+3.5	96.5	0.112	34.0	220

WIMP Search 2024 (WS2024)

- 220 live-day exposure from March '23 to March '24
- Excellent electron-lifetime, greater than 8ms for most of the run

Calibrations

Backgrounds predominantly **electron recoils**, WIMPs always **nuclear recoils**

ER calibration:

 High-stats (156k) tritium β decays – injected radiolabeled methane with 3H and 14C

NR calibration:

 Monoenergetic 2.45 MeV neutrons from DD fusion generator

Other calibrations: ^{131m}Xe, ^{83m}Kr, activation lines, AmBe and AmLi neutrons,

Only 10% of tritium plotted (to match DD stats)

~99.9% discrimination of flat ER background with 50% acceptance for 40 GeV WIMP

Same discrimination as WS2022

Backgrounds

- Dissolved β emitters:
 - **²¹⁴Pb** (²²²Rn), ²¹²Pb (²²⁰Rn), ⁸⁵Kr, ¹³⁶Xe ($\beta\beta$)
- Dissolved EC decays (x-ray/Auger cascades):
 - ^{127/125}Xe from neutron calibration activation
 - ¹²⁴Xe (double EC), 0.095% nat. abundance
- Solar v's: ⁸B+*hep* (NR), pp+⁷Be (ER)
- Long-lived γ emitters in detector materials:
 ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co

• Accidental coincidences (expect 2.8 ± 0.6 counts)

 Neutrons from spontaneous fission and (α,n) in detector materials (~0)

Data selection

- High-rate and detector instability periods removed
 86% live time retention
- S1- & S2-based cuts target accidental events
 - Impacts final signal acceptance
 - Validated with calibration (tritium, AmLi, DD)
- Fiducial volume: 5.5 ± 0.2 tonne mass
- Skin/OD veto anti-coincidence
- Observed 1220 events (expected 1210)

Bias mitigation via salting

- Salt: fabricated signals randomly injected into raw data stream
- Salt rate hidden from analyzers and bound by WS2022 upper limit
- Events stitched together using S1s & S2s from sequestered calibration data
- Covers WIMP and higher-energy NR regions
- Unsalting after analysis finalized

Xenon flow patterns

Circulation system allows control of xenon flow states in TPC

- High mixing
 - turbulent 0
 - desired for calibration injections Ο
- Low mixing
 - laminar flow 0
 - radon-quiet central volume Ο
- Flow measured by Rn-Po alpha pairs
- Allows prediction of 214Pb motion
 - Dominant background can be tagged! 0

Also see Phys. Rev. D 110 012011 (2024) -**XENON Collaboration**

α

Active tag of 214Pb

"Radon-tag" uses field & flow model to predict locations of charged and neutral 214Pb

t=25 min t=0 min t=5 min Volume t=15 min t=5 min 214pb t=15 min t=25 min

$$2^{18}PO \rightarrow 2^{14}Pb \rightarrow 2^{14}Bi \rightarrow 2^{14}PO$$

Tag volume tuned by comparing flow-prediction & BiPo observation

214Pb activity in WS:

- 3.9 ± 0.6 µBq/kg in total exposure
- **1.8 ± 0.3 μBq/kg** in untagged sample

Flow-tag in 2024 WIMP search

- 60 ± 4 % of ²¹⁴Pb in 15% exposure
- consistent with tritium calibration

Flow-tag in 2024 WIMP search

- 60 ± 4 % of ²¹⁴Pb in 15% exposure
- consistent with tritium calibration

~20 counts – Qy floated in fit

double-electron-capture of ¹²⁴Xe

Ionization density impacts signal production – 127Xe EC

¹²⁴Xe LL recombination modeling

More ionization density \rightarrow more recombination

- Thomas-Imel: Phys. Rev. A. 1987; 36(2): 614

10 keV LL has twice ionization density of L

- same Auger electron range
- twice number of ions

Calculation:

Fit in WS:

$$Q_y^{LL} = (0.75 \pm 0.04) Q_y^{\beta}$$

 $Q_y^{LL} = (0.70 \pm 0.04) Q_y^{\beta}$

Also see cross-track recombination model from Xu et. al. 2503.07562

WS2024+2022 combined limit

Frequentist, 2-sided profile likelihood ratio test statistic

Upper limit is power constrained @ -1σ sensitivity band per DM conventions: EPJC 81 907 (2021)

Under-fluctuation from

- observed arrangement of accidental events
- combination with WS2022

Combined min cross section:

 σ SI= 2.2 x 10⁻⁴⁸ cm² @ 43 GeV/c2

WS2024+WS2022 Combined Spin Dependent Limits

Grey bands show theoretical uncertainties on SD form factors Solid black show power constrained limits

Conclusions

- LZ set leading limits on WIMPs
- Novel analyses and observations:
 - Demonstrated 60% reduction of primary ER background with flow-based tagging first use of this technique for a dark matter result – paper in prep
 - First observation of suppressed charge yield from LL-shell captures of 124Xe
- LZ expected to collect data until 2028

Other DM results by LZ: <u>EFT</u>, <u>covariant EFT</u>, <u>WIMP-pion</u>, <u>Axions and ER searches</u>, <u>ultra-heavy DM</u>, <u>millicharged</u>, <u>cosmic-ray boosted DM</u>

On the horizon: 0v2β, 8B

LZ (LUX-ZEPLIN) Collaboration, 38 Institutions

- **Black Hills State University**
- **Brookhaven National Laboratory** .
- **Brown University** .
- **Center for Underground Physics** .
- Edinburgh University .
- Fermi National Accelerator Lab.
- Imperial College London •
- King's College London .
- Lawrence Berkeley National Lab. •
- Lawrence Livermore National Lab.
- LIP Coimbra .
- Northwestern University .
- Pennsylvania State University
- **Royal Holloway University of London** •
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab. •
- Texas A&M University .
- University of Albany, SUNY
- **University of Alabama** .
- **University of Bristol**
- **University College London** •
- University of California Berkeley •
- **University of California Davis**
- **University of California Los Angeles**
- University of California Santa Barbara
- University of Liverpool •
- University of Maryland .
- University of Massachusetts, Amherst
- **University of Michigan**
- University of Oxford .
- University of Rochester •
- **University of Sheffield** •
- University of Sydney
- **University of Texas at Austin**
- University of Wisconsin, Madison
- University of Zürich .

https://lz.lbl.gov/

Science and Technology **Facilities** Council

Swiss National

KK

Thanks to our sponsors and participating institutions!

Science Foundation

Liquid xenon flow control

Tagged ²¹⁴Pb spectrum

Difference between ...

- tagged single scatters
- data-driven accidentals spectrum from time-shifted tag

... gives

Accidentals-subtracted ²¹⁴Pb spectrum

- 1018 keV Q-value of ²¹⁴Pb β-decay
- shoulders of γ/IC-emitting states

124Xe double electron capture explains leakage

"World's rarest decay" - $T_{1/2} = (1.09 \pm 0.14_{stat} \pm 0.05_{sys}) \times 10^{22}$ yr (LZ measurement)

~5 kg in fiducial volume (0.1% nat. abund.) LM (6.0 keV) & LL-shell (10.0 keV) relevant for WIMP search

Skin-tagged ¹²⁷Xe L-shell EC

Lower charge yield than β -decays \rightarrow recombination enhancement

- Cosmogenically activated ¹²⁷Xe in WS2022 (plot)
- In WS2024, used neutron-activated ¹²⁵Xe

XELDA predicted additional recombination

XELDA clearly suggests additional electron-ion recombination in ¹²⁷Xe single EC

LZ measurements of single electron capture LZ Collaboration: 2503.05679 (accepted to PRD)

Two strategies

Multiple scatter (left)

- γ resolved separately
- events in bulk, high stats
- charge-only

Single scatter (right)

- γ is tagged in Skin
- events near the wall, low stats
- S1–S2 measurement

EC measurement summary

Failing goodness of fits

Failing goodness-of-fit when DEC isn't modeled

Accidental Coincidence Background

Pile-up of uncorrelated S1 and S2 pulses

LZ's data driven model:

- Rate from unphysical drift time (UDT) events
- Shape from analysis cuts applied to manufactured accidentals

Expected counts: 2.8 ± 0.6

DEC impacts on WIMP searches

- small impact on LZ projected limits

- small overlap between WIMPs and LL
- larger impacts to EFT
- major impact to goodness-of-fit

Mock data (LL model) and background model (no LL model)

Background components

TABLE I. The expected and best-fit counts for different sources in the 3.3 tonne-year exposure of WS2024, including a 40 GeV/ c^2 WIMP signal. Flat β -decay components have been separated based on whether they are affected by the flow state or the radon tag, and the neutron counts are derived *in situ.* "Det. γ s" refers to γ -ray contributions from detector materials, whose Compton spectra are also flat in the ROI.

Source	Pre-fit Expectation	Fit Result
214 Pb β s	743 ± 88	733 ± 34
$^{85}\mathrm{Kr}$ + $^{39}\mathrm{Ar}\ \beta\mathrm{s}$ + det. $\gamma\mathrm{s}$	162 ± 22	161 ± 21
Solar $\nu \ \mathrm{ER}$	102 ± 6	102 ± 6
212 Pb + 218 Po β s	62.7 ± 7.5	63.7 ± 7.4
Tritium+ ¹⁴ C β s	58.3 ± 3.3	59.7 ± 3.3
136 Xe $2 u\beta\beta$	55.6 ± 8.3	55.8 ± 8.2
124 Xe DEC	19.4 ± 3.9	21.4 ± 3.6
127 Xe + 125 Xe EC	3.2 ± 0.6	2.7 ± 0.6
Accidental coincidences	2.8 ± 0.6	2.6 ± 0.6
Atm. ν NR	0.12 ± 0.02	0.12 ± 0.02
$^{8}\mathrm{B}+hep~\nu~\mathrm{NR}$	0.06 ± 0.01	0.06 ± 0.01
Detector neutrons	$^{\mathrm{a}}0.0^{+0.2}$	$0.0^{+0.2}$
$40 \ { m GeV}/c^2 \ { m WIMP}$	_	$0.0^{+0.6}$
Total	1210 ± 91	1203 ± 42

^a The expected number of neutron events results from a fit to the sample of veto detector-tagged events. This expectation is not explicitly used in the final combined fit as this sample is included directly in the likelihood, as described in the text.

LZ S2 spectra

Source	Pre-fit Expectation	Fit Result
$^{214}\mathrm{Pb}\ \beta\mathrm{s}$	743 ± 88	733 ± 34
$^{85}\mathrm{Kr}$ + $^{39}\mathrm{Ar}\ \beta\mathrm{s}$ + det. $\gamma\mathrm{s}$	162 ± 22	161 ± 21
Solar ν ER	102 ± 6	102 ± 6
$^{212}\text{Pb} + ^{218}\text{Po} \ \beta \text{s}$	62.7 ± 7.5	63.7 ± 7.4
Tritium+ ¹⁴ C β s	58.3 ± 3.3	59.7 ± 3.3
136 Xe $2 uetaeta$	55.6 ± 8.3	55.8 ± 8.2
124 Xe DEC	19.4 ± 3.9	21.4 ± 3.6
127 Xe + 125 Xe EC	3.2 ± 0.6	2.7 ± 0.6
Accidental coincidences	2.8 ± 0.6	2.6 ± 0.6
Atm. ν NR	0.12 ± 0.02	0.12 ± 0.02
$^{8}\mathrm{B}+hep~\nu~\mathrm{NR}$	0.06 ± 0.01	0.06 ± 0.01
Detector neutrons	$^{\mathrm{a}}0.0^{+0.2}$	$0.0^{+0.2}$
$40 \text{ GeV}/c^2 \text{ WIMP}$	-	$0.0^{+0.6}$
Total	1210 ± 91	1203 ± 42

Components of WIMP search likelihood

	1	2	3	4	5	6
	High Mixing	Radon Tag Inactive	Radon Tagged	Radon Untagged	Skin/OD Vetoed	WS2022
Exposure [tonne-yr]	0.6	0.6	0.3	1.8	n/a	0.9

- Likelihood combines **six samples** for final analysis
- Skin/OD-tagged sample (5) provides constraint of neutron background rate
 - Constrained to zero neutrons
 - neutron tagging efficiency: 92 ± 1%
- ¹²⁴Xe DEC charge yield floated for WS2024-only
- WS2022 sample (6) unmodified 1st WIMP result \rightarrow maximize sensitivity

WS2024 only

