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Why Violate Symmetries?

• Standard Model works well, but we 
know it’s incomplete

• SM is based on symmetries, but 
symmetries have a habit of being 
broken (e.g., electroweak, chiral, CP)

• Even small violations can have 
important consequences

• Good place to look for new physics
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Lepton Flavor Violation

• Lepton flavor conservation is an 

accidental symmetry of SM

• 𝑈(1)𝐿𝑒
× 𝑈 1 𝐿𝜇

× 𝑈 1 𝐿𝜏

• Lepton flavor conservation is violated by 

neutrino oscillations

• Massive neutrinos give rise to PMNS 

mixing (analogous to CKM for quarks) 
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Charged Lepton Flavor Violation

• If LFV exists for neutrinos, then charged 
lepton flavor violation must also exist

• Process is highly suppressed in SM + 
neutrino oscillations:  BR ≲ 10−54

• Loop process

• Smallness of neutrino masses

• GIM mechanism
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Experimental Progress in CLFV

Calibbi & Signorelli 

(2017)
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Nuclear 𝝁 − 𝒆 

Conversion Searches

• Basic idea:  Collide muon beam with atomic 
target; some muonic atoms will be formed

• Primary background is decay 𝜇 → 𝑒 𝜈𝜇𝜈𝑒

• Three-body decay spectrum

• Hope to observe clean, monoenergetic signal 
from rare 𝜇 → 𝑒 decay

• 𝐸𝑒
𝑐𝑜𝑛𝑣 = 𝑚𝜇 − 𝐸𝑏𝑖𝑛𝑑 − 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 

• ≈ 105 MeV for Al, ≈ 95.6 MeV for Au
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Nuclear 𝝁 − 𝒆 Conversion Searches

• Observable of interest is

𝑅𝜇𝑒 =
𝜔𝑐𝑜𝑛𝑣

𝜔𝑐𝑎𝑝𝑡
=

Γ 𝜇 +𝑍
𝐴 𝑁 → 𝑒 +𝑍

𝐴 𝑁

Γ 𝜇 +𝑍
𝐴 𝑁 → 𝜈𝜇 +𝑍−1

𝐴 𝑁

• N.b.:  We focus on coherent conversion; 
incoherent also possible (Haxton et al. 2024)

• Current best limit is from SINDRUM II (2006):                  
𝑅𝜇𝑒 < 7 x 10−13 on 79

197Au (90% C.L.)

• Near-future improvement expected by COMET Phase I 
(𝑅𝜇𝑒 < 7 x 10−15) and Mu2e Run I (𝑅𝜇𝑒 < 6.2 x 10−16),       
both on 13

27Al

van der Schaaf (2003)
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Lorentz Violation

• Lorentz symmetry is a fundamental symmetry 
of the SM

• Lorentz invariance is a statement of isotropy in 
spacetime (symmetry under rotations and 
boosts)

• Small violations of Lorentz invariance may exist 
and would be of enormous interest for moving 
beyond the SM

• Presence of such violations introduces 
meaningful distinction between observer and 
particle transformations
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In a Lorentz-invariant theory…
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Standard Model Extension

• Very general effective field theory starting from SM+GR and built from known particles

• Allows for generic Lorentz- and CPT-violating interactions

• CPTV ⇒ LV (Greenberg 2002), so CPTV automatically included

• LV can occur spontaneously or explicitly

• No assumptions about flavor structure, so possible CLFV interactions are also included

• Still requires coordinate-independent physics, so Lagrangian is observer Lorentz and 
general-coordinate scalar
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Nuclear 𝝁 − 𝒆 Conversion in the SME

• Most relevant for nuclear 𝜇 − 𝑒 conversion are EM (mass dim. 5) and 4-point quark-lepton (mass dim. 
6) operators

• Lagrangian (𝑄 ∈ 𝑢, 𝑑, 𝑠 , 𝑞 ∈ 𝑢, 𝑑 ; red = CPT-odd) is given by

−
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Leptonic Wavefunctions

• The bound muon (1s, 𝜅 = −1) and the plane-wave electron wavefunctions are 
found by numerically solving the Dirac equation 

• 𝑊 is the energy; 𝜅 = ∓(𝐽 + 1/2); 𝑉(𝑟) is the electric potential; 𝑢1 𝑟  and 
𝑢2 𝑟  are related to the radial components of the wavefunction

• Spherically-symmetric models fitting experimental data exist for the nuclear 
charge distributions of various isotopes (e.g., de Vries et al. 1987)
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Conversion Rates

• Conversion rates involve the square of the transition amplitude

• The nuclear matrix elements 𝛼 = 𝑁|𝑞𝑞|𝑁  and 𝛽 = 𝑁|𝑞𝛾0𝑞|𝑁  

contributing to coherent conversion have already been computed       

(e.g., Kosmas et al. 2001)
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Consequences of Lorentz Violation

• Lorentz violation means location, time, and 
orientation of the experiment matter

• Leading effect is rotation of Earth with 
respect to fixed SME background 
coefficients

• Conversion rates easiest to calculate in lab 
frame in spherical coordinates 

• Bounds have to be translated to a standard 
reference frame to be meaningful
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Sun-Centered Frame

• Standard reference frame for LV studies

• 𝑍-axis towards celestial north

• 𝑋-axis from Earth to Sun at 2000 
vernal equinox

• Rotation from SCF to lab-frame 
coefficients is time-dependent and relies 
on laboratory location and apparatus 
orientation
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Obtaining Bounds

• Bounds are taken one-at-a-time on the various components of each relevant SME 
coefficient in the sun-centered frame

• The conversion frequency can be decomposed into a time-independent component and 
time-dependent harmonics in the sidereal frequency of the Earth

• Our results are time-averaged, since we use only the time-integrated experimental 
limit on the rate

• Sidereal analysis of time-stamped data would provide greater sensitivity to some 
components of the coefficients

• Sidereal oscillations in data could provide “smoking gun” signal of LV
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Constraints and Projections
Coefficient Type SINDRUM II 

Constraints

(90% C.L.)

COMET Phase I

(projected)

Mu2e Run I

(projected)

Electromagnetic < 6 − 8 x 10−12 GeV−1 < 0.9 − 1 x 10−12 GeV−1 < 0.2 x 10−12 GeV−1

Quark-Lepton, 

𝜓𝑢,𝑑𝜓𝑢,𝑑

< 6 − 7 x 10−13 GeV−2 < 1 x 10−13 GeV−2 < 0.2 x 10−13 GeV−2

Quark-Lepton,

𝜓𝑠𝜓𝑠

< 10 − 15 x 10−13 GeV−2 < 2 x 10−13 GeV−2 < 0.4 x 10−13 GeV−2

Quark-Lepton, 

𝜓𝑢,𝑑𝛾0𝜓𝑢,𝑑

< 20 − 30 x 10−13 GeV−2 < 4 x 10−13 GeV−2 < 0.7 x 10−13 GeV−2
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Outlook

• Better constraints on EM operators by about an 
order of magnitude already obtained from MEG 
(Kostelecký, Passemar, Sherrill 2022)

• MEG II will keep 𝜇 → 𝑒𝛾 competitive for the EM 
operators in the short term; final results from 
COMET and Mu2e could surpass those bounds

• Quark-lepton operators constrained uniquely in this 
channel (first bounds); nuclear conversion 
complementary to other channels

• With their full sensitivities, COMET and Mu2e 
should improve bounds about two orders beyond 
SINDRUM II

COMET Collaboration 
(2020)

Mu2e Collaboration (2023)
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Backup
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Current/Future 𝝁 → 𝒆 Conversion Limits

Channel Current Limit:

BR<

Future Sensitivity:

BR<

𝜇 → 𝑒𝛾 4.2 x 10−13

(MEG)

6 x 10−14

(MEG II)

𝜇 → 3𝑒 1.0 x 10−12

(SINDRUM)

10−16

(Mu3e)

𝜇𝑁 → 𝑒𝑁 7 x 10−13

(SINDRUM II)

10−14 (DeeMe)

7 x 10−15 / 7 x 10−17 (COMET)

6.2 x 10−16 / 8 x 10−17 (Mu2e)
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Coordinate Information
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Harmonic Dependences
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Constraints and 

Projections

d=5 in units of 

10−12GeV−1

 

d=6 in units of 

10−13GeV−2

𝐽 ∈ {𝑋, 𝑌}
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