# Renormalization Of Beta Decay At 3+Loops

PRESENTED BY PETER VANDER GRIEND

ON BEHALF OF KAUSHIK BORAH, RICHARD J. HILL, RYAN PLESTID

CIPANP | MADISON WISCONSIN | JUNE 2025

# ARXIV:2309.15929, ARXIV:2309.07343, ARXIV:2402.13307, ARXIV:2402.14769.

# Caltech

## **Neutrino Theory Network**













# Motivation & relevance for **fundamental physics**. Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• The **Fermi function** from loops.

## • Structure of **radiative corrections** from EFT.

Renormalization group resummation of logarithms.





## $CKM \equiv CABIBBO-KOBAYASHI-MASKAWA$







S



## $CKM \equiv CABIBBO-KOBAYASHI-MASKAWA$

S







# CKM Unitarity FIRST ROW UNITARITY $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ IN WOLFENSTEIN NOTATION $1 - \lambda_{ud}^2 + \lambda_{us}^2 + O(\lambda^6) = 1$

• Tension in first-row CKM unitarity at  $\sim 10^{-3}$  level.

• If theory is under control: strong hints of new physics!







5

# Calculate Matrix Element To High Order

- At this level of accuracy
- Need control over corrections in low-energy theory at least at

# $O(Z^2 \alpha^3)$ i.e. 3+ loops







# Precision goal: 100 ppm





# **Historical Approach**

- The "ft'' value includes the Fermi function (Dirac w.f.).
- $\Delta_R^V$  is a short-distance correction.
- $\delta_{NS}$  and  $\delta_{C}$  are related to nuclear structure.
- $\delta'_R$  computed in the "independent particle model".

# THIS TALK: A MODEL-INDEPENDENT EFT APPROACH TO BOTH THE FERMI FUNCTION AND $\delta_R'$

 $\mathcal{F}t \equiv ft(1+\delta_R')(1+\delta_{\rm NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)},$ 



# Main Idea

- At ~ MeV energies
   nuclei appear point-like.
- Long-distance QED corrections can be compute in an EFT.
- At "leading-power" only sensitive to charge of nucleus.

# DEGREES OF FREEDOM

- 1. Heavy nuclei A and B.
- 2. Electrons.
- 3. Photons.
- Just like HQET but nuclei are the "heavy quarks".
- Gauge field is photon.



# Main Idea

- At ~ MeV energies
   nuclei appear point-like.
- Long-distance QED corrections can be compute in an EFT.
- At "leading-power" only sensitive to charge of nucleus.

## SIMPLE FEYNMAN RULES

## COULOMB-FIELD

 $\mu$ 

 $= i Z e \, \delta^{\mu}_0 \, 2 \pi \delta(q^0)$ 



# **Impact For Flavour Physics**

# Shifting $\delta_3$

| transition                                         | $\left  (\Delta a) \times Z^2 \alpha^3 \log(\Lambda/m) \right $ |
|----------------------------------------------------|-----------------------------------------------------------------|
| $^{14}\mathrm{O} \rightarrow  ^{14}\mathrm{N}$     | $-1.1 \times 10^{-4}$                                           |
| $^{26m}\mathrm{Al} \rightarrow ^{26}\mathrm{Mg}$   | $-3.2 \times 10^{-4}$                                           |
| $^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$     | $-5.6 \times 10^{-4}$                                           |
| $^{34}\mathrm{Ar} \rightarrow ^{34}\mathrm{Cl}$    | $-6.3 	imes 10^{-4}$                                            |
| $^{38m}\mathrm{K} \rightarrow ^{38}\mathrm{Ar}$    | $-7.1 \times 10^{-4}$                                           |
| $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$    | $-8.7 	imes 10^{-4}$                                            |
| ${}^{46}\mathrm{V} \rightarrow {}^{46}\mathrm{Ti}$ | $-10.5 \times 10^{-4}$                                          |
| $^{50}{ m Mn}  ightarrow  {}^{50}{ m Cr}$          | $-12.5 \times 10^{-4}$                                          |
| $^{54}\mathrm{Co} \rightarrow {}^{54}\mathrm{Fe}$  | $-14.6 \times 10^{-4}$                                          |









# Motivation & relevance for **fundamental physics**. Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• The **Fermi function** from loops.

## • Structure of **radiative corrections** from EFT.

Renormalization group resummation of logarithms.



## We Just Compute Diagrams! WAVEFUNCTION **RENORMALIZATION NOT** SHOWN TWO LOOP **TREE-LEVEL** $Z_A$ Sum Swys $Z_A$ $Z_B$ $Z_B$ M ONE LOOP $Z_A$ Zun $Z_B$ <u>n</u> zn Sum $Z_A$ $Z_A$ $Z_B$ $Z_B$























# Number Of Diagrams Grows Factorially

## TREE-LEVEL

• 1 diagram.

### ONE LOOP

• 3 diagrams.

### TWO LOOP

• 21 diagrams.

## THREE LOOP

144 diagrams.

- This is not feasible by brute force.



# For the Fermi function we need 4+ loops.

# Solution: Make Use Of Simplified Feynman Rules

 $\mu$ L  $= i(Z_A e)\delta_0^{\mu}$  $q^{0} + i0$ 



# Number Of Diagrams Grows Factorially

## TREE-LEVEL

• 1 diagram.

### ONE LOOP

• 3 diagrams.

## TWO LOOP

• 21 diagrams.

## THREE LOOP

• 144 diagrams.



# Solution: Make Use Of Simplified Feynman Rules

# Reduce Number Of Diagrams Avoid Difficult Integrals





# Equivalent Feynman Rules

## TREE-LEVEL

• 1 diagram.

## ONE LOOP

• 2 diagrams.

## TWO LOOP

• 5 diagrams.

## THREE LOOP

• 10 diagrams.





## ARXIV:2402.14769

## 1 NUCLEUS WITH UNIT CHARGE + A BACKGROUND COULOMB FIELD



## ONE LOOP







# Fermi Function ATTRACTED TO NUCLEUS

- Oulomb effects are UV divergent.
- Largest effects are a series in  $Z\alpha$
- Historically done with finite-distance regulator



# **Extraction Of Hard Matrix Element**

# KNOWN TO ALL ORDERS IN $Z\alpha$

## EXTRACT WHAT WE WANT

 $\mathcal{M}_H(\mu_S, \mu_H) =$ 





 $\Psi(\mathbf{x}) = \mathcal{M}_{S}(\mu_{S})\mathcal{M}_{H}(\mu_{S}, \mu_{H})\mathcal{M}_{\mathbf{x}}(\mu_{H}, \mathbf{x})$ 

# NEW CALCULATION

 $\Psi(\mathbf{x})$ 

 $\mathcal{M}_{\mathbf{X}}(\mu_{H}, \mathbf{X})\mathcal{M}_{S}(\mu_{S})$ 





# Fermi-Function In The MS Scheme

 $\mathcal{M}_H(\mu_S,\mu_H) = \mathrm{e}^{rac{\pi\xi}{2} + i\xi \left(\log rac{2}{\mu_I}\right)}$ 

 $\sqrt{\frac{\eta - i\xi}{1 - i\xi \frac{m}{E}}} \sqrt{\frac{E + \eta m}{E + m}} \sqrt{\frac{2\eta}{1 + \eta}}$ 

•  $\eta = \sqrt{1 - Z^2 \alpha^2}$  •  $\xi = Z \alpha / \beta$ 

$$\frac{2p}{\iota_S} - \gamma_{\rm E} \Big) - i(\eta - 1) \frac{\pi}{2} \frac{2\Gamma(\eta - i\xi)}{\Gamma(2\eta + 1)} \Big)$$
$$\left(\frac{2p \mathrm{e}^{-\gamma_{\rm E}}}{\mu_H}\right)^{\eta - 1} \times \left[\frac{1 + M^*}{2} + \frac{1 - M}{2}\right]$$

•  $M = (E + m)(1 + i\xi m/E)/(E + \eta m)$ 











# Motivation & relevance for **fundamental physics**. Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• The **Fermi function** from loops.

## • Structure of **radiative corrections** from EFT.

Renormalization group resummation of logarithms.



# **Historical Approach**

- The "ft'' value includes the Fermi function (Dirac w.f.).
- $\Delta_R^V$  is a short-distance correction.
- $\delta_{NS}$  and  $\delta_{C}$  are related to nuclear structure.
- $\delta'_R$  computed in the "independent particle model".

# THIS TALK: A MODEL-INDEPENDENT EFT APPROACH TO BOTH THE FERMI FUNCTION AND $\delta_R'$

 $\mathcal{F}t \equiv ft(1+\delta_R')(1+\delta_{\rm NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)},$ 



# Factorization Theorem

# • Amplitude depends on Wilson coefficient and matrix element.

 $\mathrm{d}\Gamma \propto |C(\mu)|^2 |\mathscr{M}(\mu)|^2 + \mathcal{O}\left((pR)^2\right)$ 

# 

$$\mathcal{F}t \equiv ft(1+\delta'_R)(1+\delta'_R)$$



ARXIV:2309.07343

Implies that all **short-distances** factorize from **long-distances**.







# **EFT Definition Of `Outer' Corrections** $\tilde{F}(Z, E) = \left[ \left| \mathcal{M}(\mu) \right|^2 \right]_{\text{leading}-Z\alpha}$ $(1 + \tilde{\delta}_R) \equiv \frac{\langle |\mathcal{M}(\mu)|^2 \rangle}{\langle \tilde{F}(Z, E) \rangle}$ ARXIV:2309.07343

 $(1 + \delta_{NS} - \delta_C)(1 + \Delta_R^V)$  ABSORBED IN WILSON COEFFICENT







# EFT Definition Of 'Outer' Corrections

$$(1+\delta_R') := \left[\frac{C(\mu_L)/C(\mu_H)}{\exp\left[(1-\sqrt{1-Z^2\alpha^2}) \log(\mu_H/\mu_L)\right]}\right]^2 \left(\frac{\int \mathrm{d}\Pi \quad \left\langle |\mathcal{M}_H|^2 \right\rangle}{\int \mathrm{d}\Pi \ F(Z,E) \times \frac{4\eta}{(1+\eta)^2}}\right)_{\mu_H}$$

# $(1 + \tilde{\delta}_R) \equiv \frac{\langle |\mathcal{M}|^2(\mu) \rangle}{\langle \tilde{F}(Z, E) \rangle}$

## **EFT Definition Of Long-Distance Corrections**

ARXIV:2309.07343









# **Resumation With RG+EFT** $\mathrm{d}\Gamma \propto |C(\mu)|^2 |\mathcal{M}(\mu)|^2$

# **Calculate With Renormalization Group**





## USE EIKONAL ALGEBRA TO REDUCE DIAGRAMS

 $\gamma_2^{(1)} = 16\pi^2 \left( 6 - \frac{\pi^2}{3} \right)$ 



## MIXED EUCLIDEAN + LORENTZIAN INTEGRALS



# New Result For Anomalous Dimension

| $Z^n$ Loops | 1-loop                                | 2-loop                          |
|-------------|---------------------------------------|---------------------------------|
| $Z^0$       | $\gamma_0^{(1)}=-3$                   | $\gamma_1^{(2)} = -16\zeta_2 +$ |
| $Z^1$       | $\left\   \gamma_0^{(0)} = 0 \right.$ | $\gamma_1^{(1)}=\gamma_2^{(}$   |
| $Z^2$       |                                       | $\gamma_1^{(0)} = -3$           |
| $Z^3$       |                                       |                                 |
| $Z^4$       |                                       |                                 |





# **Impact For Flavour Physics**

# Shifting $\delta_3$

| transition                                         | $\left  (\Delta a) \times Z^2 \alpha^3 \log(\Lambda/m) \right $ |
|----------------------------------------------------|-----------------------------------------------------------------|
| $^{14}\mathrm{O} \rightarrow  ^{14}\mathrm{N}$     | $-1.1 \times 10^{-4}$                                           |
| $^{26m}\mathrm{Al}  ightarrow  ^{26}\mathrm{Mg}$   | $-3.2 \times 10^{-4}$                                           |
| $^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$     | $-5.6 	imes 10^{-4}$                                            |
| $^{34}\mathrm{Ar} \rightarrow ^{34}\mathrm{Cl}$    | $-6.3 	imes 10^{-4}$                                            |
| $^{38m}\mathrm{K} \rightarrow ^{38}\mathrm{Ar}$    | $-7.1 \times 10^{-4}$                                           |
| $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$    | $-8.7 	imes 10^{-4}$                                            |
| ${}^{46}\mathrm{V} \rightarrow {}^{46}\mathrm{Ti}$ | $-10.5 \times 10^{-4}$                                          |
| $^{50}{ m Mn}  ightarrow  {}^{50}{ m Cr}$          | $-12.5 \times 10^{-4}$                                          |
| $^{54}\mathrm{Co} \rightarrow {}^{54}\mathrm{Fe}$  | $-14.6 \times 10^{-4}$                                          |



COUNTING  $Z \sim \log \sim 1/\sqrt{\alpha}$ 







# What's Next?





- the long-distance EFT.
- Supplies new model-independent correction relevant for interpreting superallowed beta decays.

## TO APPEAR LATER THIS YEAR

- Two-loop corrections for superallowed beta decays
- Peter Vander Griend<sup>1,2</sup>, Zehua Cao<sup>1</sup>, Richard J. Hill<sup>1,2</sup>, and Ryan Plestid<sup>3</sup>





- Theory so far worked out at leading power.
- Sub-leading power is straightforward, but matrix elements must be computed.
- Structure of factorization formulae will change.
- Many simple things to do here.

# Power Corrections





- framework to extract Wilson coefficient.

# Matching Calculations

# Chiral-EFT and/or ab initio provides a microphysical

Matching calculation still needs to be performed.





- Long-distance QED corrections to beta decay are enhanced by nuclear charge.
- Compute in a point-like EFT with short-distance corrections absorbed into low-energy constants.
- First updates to outer radiative corrections in 40 years.
- Impacts CKM unitarity.

ARXIV:2309.15 ARXIV:2309.07 **ARXIV:2402.13** ARXIV:2402.14

| 929, |  |
|------|--|
| 343, |  |
| 307, |  |
| 769. |  |
|      |  |



